AMERICAN MATHEMATICAL SOCIETY

MathSciNet
Mathematical Reviews
Previous | Up \mid Next
Citations From References: $0 \quad$ From Reviews: 0

MR2501739 (2010g:53111) 53C42 53C24
Ranjbar-Motlagh, Alireza (IR-SHAR)
A non-existence theorem for isometric immersions. (English summary)
J. Geom. Phys. 59 (2009), no. 3, 263-266.

The non-embedding theorem by Chern and Kuiper asserts that if an isometric immersion of a compact Riemannian manifold M into \mathbb{R}^{q} satisfies that for any point $x \in M$ there is a k-dimensional subspace P_{x} of the tangent space $T_{x} M$, for some integer $k \geq 2$, such that the sectional curvature for any plane in P_{x} is non-positive, then the codimension of the immersion is greater than or equal to $k[\mathrm{~S}$. Chern and N. H. Kuiper, Ann. of Math. (2) 56 (1952), 422-430; MR0050962]. The main result of the article under review consists of a generalization of this theorem for an isometric C^{2}-immersion of a noncompact manifold M into a Riemannian manifold \bar{M}^{q}. In fact, the author replaces the hypothesis of compactness of M in the statement of the non-embedding theorem by that of having a bounded image of the immersion, and some geometric estimations on the sectional curvatures. Then he states a criterion guaranteeing that the codimension of the immersion is greater than or equal to k. In order to obtain this generalization he uses an auxiliary function: the distance function from a fixed point p on \bar{M}^{q}, whose Hessian is bounded from below by a real-valued function on the tangent bundle of the boundary of a proper ball centered at p. Thus, its bound is applied to control the difference between the sectional curvatures of any plane in P_{x} considered as a subspace of $T_{x} M$ and $T_{x} \bar{M}^{q}$, respectively. This procedure can be applied because the "weak principle for the Hessian" [S. Pigola, M. Rigoli and A. G. Setti, Mem. Amer. Math. Soc. 174 (2005), no. 822, x+99 pp.; MR2116555] is required to hold on M and the image of the immersion does not intersect the cut locus of p. Further on, the author recovers from this generalization the main results in [L. Jorge and D. Koutroufiotis, Amer. J. Math. 103 (1981), no. 4, 711-725; MR0623135], and also sharpens the results in [A. R. Veeravalli, Bull. Austral. Math. Soc. 62 (2000), no. 1, 165-170; MR1775899].

Federico Sánchez-Bringas

References

1. S.S. Chern, N. Kuiper, Some theorems on the Isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. Math. 56 (1952) 422-430. MR0050962
2. A. Ranjbar-Motlagh, Rigidity of spheres in Riemannian manifolds and a nonembedding theorem, Bol. Soc. Bras. Mat. 32 (2) (2001) 159-171. MR1860867
3. L. Jorge, D. Koutroufiotis, An estimate for the curvature of bounded submanifolds, Amer. J. Math. 103 (4) (1981) 711-725. MR0623135
4. A.R. Veeravalli, A sharp lower bound for the Ricci curvature of bounded hypersurfaces in space forms, Bull. Austral. Math. Soc. 62 (1) (2000) 165-170. MR1775899
5. S. Pigola, M. Rigoli, A.G. Setti, Maximum principles on Riemannian manifolds and applications, Memoirs AMS 174 (822) (2005). MR2116555
6. M.P. do Carmo, Riemannian Geometry, Birkhäuser, Boston, 1993. MR1138207
7. H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (2) (1967) 205-214. MR0215259
8. R.M. Schoen, S.T. Yau, Lectures on Differential Geometry, Vol. I, International Press, 1994. MR1333601

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

