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Primes and Zeta Functions: definitions

Consider a geometric space made of primes and their
amalgams.
e.g. Q, number fields, function fields, Riemannian
manifolds, graphs, ...
The connectivity of the space is naturally related to
number of primes and how they are mixed together.
Connectivity is a fundamental concept that can be studied
and measured in many different ways.
A zeta (in general L) function is a mathematical concept
that is supposed to present and reflect all these aspects in
a reasonable way!
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Primes and Zeta Functions: counting

Geometric spaces and zeta functions
A zeta function assigned to a geometric space is a generating
function with many nice and informative representations related
to the space.

This generating function

contains a categorized dictionary of primes and their rate
of appearance
can be represented in many different informative ways
is related to the fundamental group of the space
is related to fundamental linear dynamics on the space
defined using natural cohomologies.
has nice functional properties
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Primes and Zeta Functions: cohomology

Rational numbers

The Riemann zeta function ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

(1− p−s)−1

is related to Hecke operators but possibility for relation to a
natural diffusion is not fully understood yet.

Graphs

The Ihara zeta function ζ(u) =
∏

[P ] prime

(1−u`([P ]))−1 is related

to the adjacency operator and this relation is fully understood.

Apply u := q−s to compare!
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Riemann Hypothesis and Highly Connected Objects

Pseudomathematics

log ζ(u) = −
∑
[P ]

log(1− u`([P ])) = · · · =
∑
m≥1

Nm

m
um

=
∑
m≥1

um

m
tr(Bm) = tr

∑
m≥1

um

m
Bm

 = tr
(
log(I − uB)−1

)
= log

(
(det(I − uB))−1

)
D. Hilbert: Does there exists such a natural operator B for
Riemann’s zeta function?
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Riemann Hypothesis and Highly Connected Objects

Poles of this zeta function are essentially the eigenvalues of
B!
B is usually (cohomologically) related to a natural
dynamics on the object.
Lesser spread of spectrum for B gives rise to faster
dynamics/diffusion, and hence, more connectivity!
There are mysterious connections between zeros of
Riemann’s zeta function for Q and spectra of random
matrices!
The case of function fields have been extensively studied as
a feasible case (1949-1974: Weil conjectures proved by
Deligne).
The case of graphs is equally important, accessible, and
interesting. The chance of applying new combinatorial
techniques is already verified!
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A Royal Road to Mathematics

Euclid:
There is no Royal Road to geometry.

Graph theory zoo
Graph theory is a Royal Road to the heart of modern
mathematics that is free to be used by any curious scholar!

The road passes through Computer Science land of Oz!
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Graphs and Matrices
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Graphs and Their Laplacians

Let G = (V,E) be a finite simple graph with the adjacency
matrix A.
Let D be the diagonal matrix of degrees.
The Laplacian of G is defined to be the matrix
∆

def
= D −A.

Note that for d-regular graphs the Laplacian is dI −A.
Laplacian is the natural operator related to energy.
There exists a natural matrix ∇ representing differentiation
such that the Laplacian can be represented as ∇t∇.
(can you find it?)
Laplacian is related to natural diffusions on G.
Ihara: ζG(u)−1 = (1−u2)|E|−|V | det(I −Au+ (D− I)u2).
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Ramanujan Graphs

Riemann Hypothesis (RH) for Q
If ζ(s) = 0 and 0 < Re(s) < 1 then Re(s) = 1/2.

Riemann Hypothesis (RH) for graphs (Ihara zeta func.)

If ζ(q−s)−1 = 0 and 0 < Re(s) < 1 then Re(s) = 1/2.

This is equivalent to the following:

Ramanujan graphs
A (q + 1)-regular graph with adjacency matrix A satisfies RH iff
it is Ramanujan, i.e. if

µ
def
= max{|λ| | λ ∈ Spec(A) & |λ| 6= q + 1}

then µ ≤ 2
√
q.
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Expanders

Eigenvalues are extremal solutions for a variational problem

on the normalized energy 〈∆f,f〉
〈f,f〉 =

‖∇f‖2
2

‖f‖2
2

.

Isoperimetric numbers are extremal solutions for a
variational problem on the normalized flow ‖∇f‖1

‖f‖1
.

Comparison between these parameters are known as
isoperimetric (in particular for the first parameter as
Cheeger-Maz’ya) inequalities.
Noting that eigenvalues can be computed in polynomial
time, these inequalities can be interpreted as approximation
estimates for the NP-hard isoperimetry problem.
Expansion is the simplest form of isoperimetry used to
approximate high connectivity.
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Ordinary Tensors for Adjacency Matrices

a

b

c � 1 1’

2 2’

= a

b

c

A

B

C

a b c( )0 1 1 a
1 0 1 b
1 1 0 c

�

1 2( )
0 1 1
1 0 2

=

a A b B c C


0 0 1 0 1 0 a
0 0 0 1 0 1 A
1 0 0 0 1 0 b
0 1 0 0 0 1 B
1 0 1 0 0 0 c
0 1 0 1 0 0 C
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Ordinary Tensors for Adjacency Matrices

a

b

c
π

id

id

� 1 1’

2 2’

= a

b

c

A

B

C

a b c( )0 π 1 a
π 0 1 b
1 1 0 c

�

1 2( )
0 1 1
1 0 2
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a A b B c C
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Lifts and Randomness: random 2-lifts
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Lifts and Randomness: random 2-lifts

A. W. Marcus, D. A. Spielman, N. Srivastava, Ann. Math.
(2015)
The exists regular Ramanujan graphs of arbitrary degree within
the iterated random 2-lifts of complete graphs.

The proof is based on the fundamental technique of interlacing
families of polynomials which is also used by the same authors
to prove Kadison-Singer Problem.

21 / 42



Spectral
extremality,
tensor-like

constructions
and commu-
tativity in
graphs

A. Daneshgar

Outline

Spectral
Geometry:
big picture

Ramanujan
Graphs

Tensor-like
Construc-
tions

T-graphs

Concluding
Remarks

Cylindrical Construction: examples

The π-cylinder, Path cylinder Pn
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Schematic Duality Diagram
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Tree-cylinders (the Petersen graph)

The Petersen graph Show
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Tree-cylinders (the Coxeter graph)
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Cylindrical Construction: random π-lifts

(a) (b)
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Tree Cylinders: how they help?
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Some Lifts of Complete Graphs: definition
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Bilateral Symmetry, Commutative Decompositions
and Spectrum

Let H be a symmetric cylinder with no internal vertices (e.g. a
tree-cylinder), then

A spectral result

φ(G�H, x) =
n∏

j=1

φ

(
B +

t−1∑
i=0

θ
j

iE
bb′

i
, x

)
,

in which, B is the base of the cylinder, φ is the characteristic
polynomial and sum is a term depending on the partition.

Summary!
The spectrum of such a construction is a perturbation of the
spectrum of the base depending on the construction and the
twists.
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Eigenvalue Mixing

do the same!

x− (r(x)−1 + s(x)−1) x− (l(x)−1 + t(x)−1)x− (p(x)−1 + q(x)−1)

t(x)l(x)s(x)r(x)

q(x)p(x)

This is essentially how the determinant of a perturbation of a
tree can be computed in most important cases!
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T-graphs

History
Tree cylinders of M. Madani + A. Taherkhani ⇒ T-graphs!

Definition
A T -graph is a cylindrical construct that can be described as
replacing each vertex of a complete graph by a complete tree
and join the leaves in a special predefined order called group
labeling of trees.
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Examples of T -graphs (the Coxeter graph)
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A 3-regular Ramanujan graph of order 130

Setup
Take the 3-regular tree of hight 2 with 6 leaves as the base of
the tree-cylinders and choose the complete graph on 13 vertices
as the base-graph of the construction.

Using group-labeling this gives rise to a 3-regular Ramanujan
graph of order 130 with the following characteristic polynomial,

φ(K13 �H
•
, x) = (x− 3)(x− 1)(x+ 2)(x− 2)

3

(x
2

− 2x− 2)
2

×(x
10

+x
9

−14x
8

−12x
7

+65x
6

+45x
5

−115x
4

−55x
3

+69x
2

+12x−10)
12

.

Roots:
[−2.635(12),−2.197(12),−2.000,−1.603(12),−1.135(12),
−0.732(2),−0.485(12), 0.396(12), 0.670(12), 1, 1.424(12),
2(3), 2.08(12), 2.485(12), 2.732(2), 3.000]33 / 42
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Some Questions to Answer!

Analyze the spectra of T -graphs.
Analyze the roots of the polynomial which is the result of
an eigenvalue mixing on a tree.
Prove that there exists nice 3-regular Ramanujan graphs
within the iterated π-lifts of complete graphs. (note: this
is supported by our experimental results1.)

1Courtesy of Kasra Alishahi41 / 42
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Thank you!
Comments and Criticisms are Welcomed

daneshgar@sharif.ir
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