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Primes and Zeta Functions: definitions

Consider a geometric space made of primes and their
amalgams.

@ e.g. Q, number fields, function fields, Riemannian
manifolds, graphs, ...

@ The connectivity of the space is naturally related to
number of primes and how they are mixed together.

e Connectivity is a fundamental concept that can be studied
and measured in many different ways.

@ A zeta (in general L) function is a mathematical concept
that is supposed to present and reflect all these aspects in
a reasonable way!
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Riemann Hypothesis and Highly Connected Objects

Pseudomathematics

log ¢(u Zlog (1-— uf([P] = Z—u

[P] m>1

— Z% tr(B™) = tr Z% B™ | =tr (log(I —uB)™")

m>1 m>1

= log ((det(I — uB))~t)

D. Hilbert: Does there exists such a natural operator B for
Riemann's zeta function?
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Poles of this zeta function are essentially the eigenvalues of
B!

@ B is usually (cohomologically) related to a natural
dynamics on the object.

@ Lesser spread of spectrum for B gives rise to faster
dynamics/diffusion, and hence, more connectivity!

@ There are mysterious connections between zeros of
Riemann's zeta function for Q and spectra of random
matrices!

@ The case of function fields have been extensively studied as
a feasible case (1949-1974: Weil conjectures proved by
Deligne).

@ The case of graphs is equally important, accessible, and
interesting. The chance of applying new combinatorial
techniques is already verified!
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Graphs and Their Laplacians
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Ramanujan Graphs
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Lifts and Randomness: random 2-lifts

Spectral
extremality,
tensor-like
constructions
and commu-
tativity in
graphs

RIELEVEN  The exists regular Ramanujan graphs of arbitrary degree within
the iterated random 2-lifts of complete graphs.

Outline

Spectral
Geometry:
big picture

Ramanujan

Graphs The proof is based on the fundamental technique of interlacing

families of polynomials which is also used by the same authors
to prove Kadison-Singer Problem.

Tensor-like
Construc-
tions

T-graphs

Concluding
Remarks

21/42



EIIES

Spectral
extremality,
tensor-like
constructions
and commu-
tativity in
graphs

A. Daneshgar

Outline

Spectral
Geometry:
big picture

Ramanujan
Graphs

The 7-cylinder, Path cylinder P,

Tensor-like
Construc-
tions

T-graphs

Concluding
Remarks

22/42



Schematic Duality Diagram

Spectral
extremality,
tensor-like
constructions
and commu- G X C Cylindrical Construction

tativity in G
graphs
2

A. Daneshgar

Outline ’rG JH

Spectral HOIﬂ,(G ®. C,H) . Homl",m(Gl [C,H])
Geometry: ‘

]

big picture
g p G.H

Ramanujan
Graphs

Tensor-like
Construc-
tions

[C,H],

H Exponential Construction
T-graphs

Concluding
Remarks

23 /42



Tree-cylinders (the

Spectral
extremality,
tensor-like
constructions
and commu-
tativity in
graphs

A. Daneshgar

Outline The Petersen graph

Spectral
Geometry:
big picture

Ramanujan
Graphs

Tensor-like
Construc-
tions

T-graphs

Concluding
Remarks

24 /42

Petersen
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Tree Cylinders: how they help?
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Bilateral Symmetry, Commutative Decompositions
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A 3-regular Ramanujan graph of order 130
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a2 2(3),2.08(12), 2.485(12), 2.732(2), 3.000]
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Some Questions to Answer!
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