

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

Spectral extremality, tensor-like constructions and commutativity in graphs

> Amir Daneshgar Sharif University of Technology

http://www.sharif.ir/~daneshgar

26 December 2016 (6 Dey 1395)

daneshgar@sharif.ir

KOD KAD KED KED E VAN

Outline

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

1 [Spectral Geometry: big picture](#page-2-0)

3 [Tensor-like Constructions](#page-17-0)

2 [Ramanujan Graphs](#page-8-0)

4 [T-graphs](#page-26-0)

5 [Concluding Remarks](#page-40-0)

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$ \equiv 299

Primes and Zeta Functions: definitions

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

• Consider a geometric space made of primes and their amalgams.

e.g. Q, number fields, function fields, Riemannian manifolds, graphs, ...

• The connectivity of the space is naturally related to number of primes and how they are mixed together.

• Connectivity is a fundamental concept that can be studied and measured in many different ways.

A zeta (in general L) function is a mathematical concept that is supposed to present and reflect all these aspects in a reasonable way!

KORK STRATER STRAKES

Primes and Zeta Functions: counting

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

Geometric spaces and zeta functions

A zeta function assigned to a geometric space is a generating function with many nice and informative representations related to the space.

This generating function

- contains a categorized dictionary of primes and their rate of appearance
- can be represented in many different informative ways
- is related to the fundamental group of the space
- is related to fundamental linear dynamics on the space defined using natural cohomologies.

KOD KAD KED KED E VAN

• has nice functional properties

Primes and Zeta Functions: cohomology

Rational numbers

The Riemann zeta function $\zeta(s) = \sum_{n=0}^{\infty} \frac{1}{n^s}$ 1 $\frac{1}{n^s} = \prod_{n \text{ min}}$ $(1-p^{-s})^{-1}$

 $n=1$ p prime is related to Hecke operators but possibility for relation to a natural diffusion is not fully understood yet.

Graphs

[big picture](#page-2-0) [Ramanujan](#page-8-0) Graphs

[Outline](#page-1-0) Spectral Geometry:

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

The Ihara zeta function $\zeta(u)=\prod \quad (1-u^{\ell([P])})^{-1}$ is related [P] prime to the adjacency operator and this relation is fully understood.

K ロ X (日) X 제공 X X 공 X - 공 : X 이익(N)

Apply $u := q^{-s}$ to compare!

Riemann Hypothesis and Highly Connected Objects

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

Pseudomathematics

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

$$
\log \zeta(u) = -\sum_{[P]} \log(1 - u^{\ell([P])}) = \dots = \sum_{m \ge 1} \frac{N_m}{m} u^m
$$

$$
= \sum_{m \ge 1} \frac{u^m}{m} \operatorname{tr}(B^m) = \operatorname{tr}\left(\sum_{m \ge 1} \frac{u^m}{m} B^m\right) = \operatorname{tr}\left(\log(I - u)^{-1}\right)
$$

$$
= \log\left((\det(I - u) - 1)\right)
$$

D. Hilbert: Does there exists such a natural operator B for Riemann's zeta function?

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Riemann Hypothesis and Highly Connected Objects

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

- Poles of this zeta function are essentially the eigenvalues of $R¹$
- \bullet B is usually (cohomologically) related to a natural dynamics on the object.
- \bullet Lesser spread of spectrum for B gives rise to faster dynamics/diffusion, and hence, more connectivity!
- There are mysterious connections between zeros of Riemann's zeta function for $\mathbb Q$ and spectra of random matrices!
- The case of function fields have been extensively studied as a feasible case (1949-1974: Weil conjectures proved by Deligne).
- The case of graphs is equally important, accessible, and interesting. The chance of applying new combinatorial techniques is already verified!

A Royal Road to Mathematics

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

Euclid:

There is no Royal Road to geometry.

Graph theory zoo

Graph theory is a Royal Road to the heart of modern mathematics that is free to be used by any curious scholar!

The road passes through Computer Science land of Oz!

KORK STRATER STRAKES

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

1 2 3 4 5 a b c d e

 $A \equiv \mathbf{1} \rightarrow A \pmod{4} \rightarrow A \equiv \mathbf{1} \rightarrow A \equiv \mathbf{1}$

É

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

¹ ² $\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}$

 $A \equiv \mathbf{1} \rightarrow A \pmod{4} \rightarrow A \equiv \mathbf{1} \rightarrow A \equiv \mathbf{1}$

É

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

¹ ² e de la comme
Objet de la comme de la co

ロ) 4 \overline{P}) 4 \overline{P})

 $2Q$

Ė,

÷

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

1 2 3 4 5 a b c d e

 4 ロ } 4 6 } 4 3 } 4

 \Rightarrow ŧ $2Q$

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

1 2 3 4 5 a b c d e

K ロ ト イ ト イ ヨ ト イ

 \Rightarrow ă $2Q$

13 / 42

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

¹ ² $\begin{array}{c}\n\circ \\
\circ \\
\circ \\
\circ \\
\circ \\
\circ \\
\circ \\
\circ\n\end{array}$

 $A \equiv \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1} \oplus \mathbf{1}$

É

Graphs and Their Laplacians

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) **Graphs**

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

- Let $G = (V, E)$ be a finite simple graph with the adjacency matrix A.
- \bullet Let D be the diagonal matrix of degrees.
- \bullet The Laplacian of G is defined to be the matrix $\Delta \stackrel{\text{def}}{=} D - A.$
- Note that for d-regular graphs the Laplacian is $dI A$.
- Laplacian is the natural operator related to energy.
- There exists a natural matrix ∇ representing differentiation such that the Laplacian can be represented as $\nabla^t \nabla$. (can you find it?)
- \bullet Laplacian is related to natural diffusions on G .
- Ihara: $\zeta_G(u)^{-1} = (1 u^2)^{|E| |V|} \det(I Au + (D I)u^2)$.

KORK REPARATION ARR

Ramanujan Graphs

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) **Graphs**

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

Riemann Hypothesis (RH) for Q If $\zeta(s) = 0$ and $0 < Re(s) < 1$ then $Re(s) = 1/2$.

Riemann Hypothesis (RH) for graphs (Ihara zeta func.)

If $\zeta(q^{-s})^{-1} = 0$ and $0 < Re(s) < 1$ then $Re(s) = 1/2$.

This is equivalent to the following:

Ramanujan graphs

A $(q + 1)$ -regular graph with adjacency matrix A satisfies RH iff it is Ramanujan, i.e. if

 $\mu \stackrel{\text{def}}{=} \max\{|\lambda| \mid \lambda \in Spec(A) \& |\lambda| \neq q+1\}$

then $\mu \leq 2\sqrt{q}$.

Expanders

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) **Graphs**

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

- Eigenvalues are extremal solutions for a variational problem on the normalized energy $\frac{\langle \Delta f, f \rangle}{\langle f, f \rangle} = \frac{\left\| \nabla f \right\|_2^2}{\left\| f \right\|_2^2}$ $\frac{1-\frac{12}{2}}{\left\|f\right\|_2^2}$.
- Isoperimetric numbers are extremal solutions for a variational problem on the normalized flow $\frac{\|\nabla f\|_1}{\|f\|_1}$.
- **Comparison between these parameters are known as** isoperimetric (in particular for the first parameter as Cheeger-Maz'ya) inequalities.
- Noting that eigenvalues can be computed in polynomial time, these inequalities can be interpreted as approximation estimates for the NP-hard isoperimetry problem.
- Expansion is the simplest form of isoperimetry used to approximate high connectivity.

Ordinary Tensors for Adjacency Matrices

 $A \subseteq Y$ $A \noplus Y$ $A \subseteq Y$ $A \subseteq Y$

Ğ,

Ordinary Tensors for Adjacency Matrices

 $A \equiv \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1} \oplus \mathbf{1}$

Ğ,

 299

[Concluding](#page-40-0) Remarks

Lifts and Randomness: random 2-lifts

イロン イ団ン イミン イミン

÷,

 $2Q$

20 / 42

Lifts and Randomness: random 2-lifts

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

A. W. Marcus, D. A. Spielman, N. Srivastava, Ann. Math. (2015)

The exists regular Ramanujan graphs of arbitrary degree within the iterated random 2-lifts of complete graphs.

The proof is based on the fundamental technique of interlacing families of polynomials which is also used by the same authors to prove Kadison-Singer Problem.

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 → 이익 (V

Cylindrical Construction: examples

Schematic Duality Diagram

23 / 42

Tree-cylinders (the Petersen graph)

Tree-cylinders (the Coxeter graph)

 $\overline{2}$

 $\overline{2}$

 2°

K ロ ト イ ト イ ヨ ト イ \Rightarrow 299

Cylindrical Construction: random π -lifts

Tree Cylinders: how they help?

K ロト K 御 ト K 差 ト K

 \Rightarrow

Some Lifts of Complete Graphs: definition

Bilateral Symmetry, Commutative Decompositions and Spectrum

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

29 / 42

Let H be a symmetric cylinder with no internal vertices (e.g. a tree-cylinder), then

A spectral result

$$
\phi(\mathcal{G}\boxtimes \mathcal{H},x)=\prod_{j=1}^n \phi\left(B+\sum_{i=0}^{t-1}\theta_i^jE_i^{b^{b'}} ,x\right),
$$

in which, B is the base of the cylinder, ϕ is the characteristic polynomial and sum is a term depending on the partition.

Summary

The spectrum of such a construction is a perturbation of the spectrum of the base depending on the construction and the twists.

Eigenvalue Mixing

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

This is essentially how the determinant of a perturbation of a tree can be computed in most important cases!

T-graphs

History

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

Tree cylinders of M. Madani + A. Taherkhani \Rightarrow T-graphs!

Definition

A T -graph is a cylindrical construct that can be described as replacing each vertex of a complete graph by a complete tree and join the leaves in a special predefined order called group labeling of trees.

 OQ

Examples of T -graphs (the Coxeter graph)

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

32 / 42

K ロ ト イ ト イ ヨ ト イ \Rightarrow 299

A 3-regular Ramanujan graph of order 130

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

Setup

Take the 3-regular tree of hight 2 with 6 leaves as the base of the tree-cylinders and choose the complete graph on 13 vertices as the base-graph of the construction.

Using group-labeling this gives rise to a 3-regular Ramanujan graph of order 130 with the following characteristic polynomial,

$$
\phi(\mathcal{K}_{13} \boxtimes \mathcal{H}^{\bullet}, x) = (x - 3)(x - 1)(x + 2)(x - 2)^{3}(x^{2} - 2x - 2)^{2}
$$

 $\times(x^{-10} + x^9 - 14x^8 - 12x^7 + 65x^6 + 45x^5 - 115x^4 - 55x^3 + 69x^2 + 12x - 10)^{12}.$

Roots:

 $[-2.635(12), -2.197(12), -2.000, -1.603(12), -1.135(12),$ $-0.732(2), -0.485(12), 0.396(12), 0.670(12), 1, 1.424(12),$ $\begin{bmatrix} 2(3), 2.08(12), 2.485(12), 2.732(2), 3.000 \end{bmatrix}$ $\begin{bmatrix} 2(3), 2.08(12), 2.485(12), 2.732(2), 3.000 \end{bmatrix}$ $\begin{bmatrix} 2(3), 2.08(12), 2.485(12), 2.732(2), 3.000 \end{bmatrix}$ \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}) \overline{BC} 2980

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

ă

 299

34 / 42

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

É

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

É

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

É

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

É

 299

38 / 42

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

É

 299

39 / 42

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

É

Some Questions to Answer!

Spectral extremality, tensor-like [constructions](#page-0-0) and commutativity in graphs

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

- Analyze the spectra of T -graphs.
- Analyze the roots of the polynomial which is the result of an eigenvalue mixing on a tree.
- • Prove that there exists nice 3-regular Ramanujan graphs within the iterated π -lifts of complete graphs. (note: this is supported by our experimental results¹.)

 $41/42$ Courtesy of Kasra Alishahi

A. Daneshgar

[Outline](#page-1-0)

Spectral Geometry: [big picture](#page-2-0)

[Ramanujan](#page-8-0) Graphs

[Tensor-like](#page-17-0) Constructions

[T-graphs](#page-26-0)

[Concluding](#page-40-0) Remarks

Thank you!

Comments and Criticisms are Welcomed

daneshgar@sharif.ir

