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Cheeger constant of a Riemannian Manifold

Cheeger constant of a (compact) n-dimensional Riemannian manifold
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The case of simple graphs

For a simple graph G = (V, E):
The max version: (Cheeger constant or edge expansion)

H(G) " min max{

[E(A,A°)| |E(A,A°)]| }
ACV(G)

Al A

G V\A
2-Isoperimetry Problem: Finding a A
2-partition (A, A“) of V(G) attaining the
edge expansion of G.
c(A,V\A)

L E@4, A°).
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Define E(A)






Prologue

2-isoperimetry (partitioning): examples

The Petersen graph P

Let the induced graph on A be connected and contain a cycle.
Thercfore, <1(P) = 1.

Can we justify this reasoning?




Weighted graphs

Model: (A finite weighted graph) A simple graph G = (V, E) together
with two weight functions w : V. — Q* andc: E — Q.

Notations: Foreveryx € Vand A,B C V,
def
deg(x) = Zc(xy).
yrx

EA,B) ¥ {e=uvecE: ucA,veB},

wAd) E Y ), A)E Y cfe).
ucA ecE(AA°)

For the case of weighted graphs with potentials
see [R. JaAvADI PHD THESIS 2011].




A naive generalization: the normalized cut problem

Let P, (V) be the set of k-partitions of V. Given a weighted graph
G = (V,E,c,w) and an integer k (2 < k < |V|), find a k-partition
(Aq,...,Ay) that gives rise to equality in the following:

A naive generalization of Cheeger’s constant (a ||.|| version):

c(Ai)

MG € min max :
{aYePy(vy 1<i<k w(A;)

k

We use the acronym NCP for the corresponding problems.




Prologue

The combinatorial case

The combinatorial case is when the weight functions ¢ and w are
constant and equal to 1, i.e. when we are dealing with simple graphs.

Note that in this case,

M(G) “ min max S
{AYer(v) 1<isk Ay




An example

All edge and vertex weights are equal to 1, £ = 4.
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Prologue

Another example

(All edge and vertex weights are equal to 1.)




Another example

(All edge and vertex weights are equal to 1.)

&'(G) < max(3,1,3) = 3




Prologue

Hardness of NCP

Convention

NCP stands for the Normalized Cut Problem. Also,
appears when £ is a constant,
disappears when £ is part of the input.

Subscript k:

Example:
CONSTANTS: An integer k.

INPUTS: A weighted graph G = (V,E,w,c) and a positive
integer N.
QUERY: Is it true that £}/ (G) < N?

NCPf is NP-complete for simple graphs.

NCP

NCP¥ is NP-complete for simple trees.




Prologue

Approximating NCP: real relaxation

What about approximations?

Z‘f" does not admit a real relaxation!




Prologue

The isoperimetric constants

Relaxing the definition!

A k-subpartition consists of k nonempty and disjoint subsets of V(G).
Let D, (G) be the class of all k-subpartitions of V(G). Define the kth
(Max) isoperimetric constants of G as,

A.
M(G) ' min max el r),
{AieD(v) 1Si<k w(A;)

and the combinatorial version as

-
Aj
M(G) “ min max ] )|
{AYteDy(v) 1<isk Ay

We use the acronym IPP for the corresponding problems.




Another example

(All edge and vertex weights are equal to 1.)




Prologue

The gradient operator

Let F, (G) and F, (G) be the set of all real functions on V(G) and
E(G), respectively, equipped with the corresponding weighted
inner-products. Define the gradient as

V:F,(G) — F.G), Vf(w)ZEf()—f).

v

Gradient of characteristic functions

ifhf = ﬁ ¥ is the normalized characteristic function of a subset
A C V(G) then

c(4) _ IVxall.
W(A) ||XA||1,W

VAL =




The gradient operator: Figure

Let f be the characteristic function of a subset A C V. Then,

Vf(e1) =Vf(e3) =0, Vf(e2) =—1.

Also, note that in this case,

IVAll, = |E(A,A%)], and [|f]|, = |A].



A real relaxation of parameters

Define,

gHG) = = {{f}: \ {f}? is positive orthonormal} :

07 (G) = {{f}, € 07 (G) | {supp(£)}, € PA(G)} -

and the relaxed parameters,

M@ inf  max(| V£,
{ﬁ}’]‘goju;y !

M G def it v

MG it max(IA],).

A
A eot(a)




Prologue

Justifications for definitions

For both max and mean versions, 7,(G) = 7,(G) = +,(G).

By definitions, in general, we have ¢, (G) < i, (G), where the
inequality can be strict (in both maximum and mean versions)!

To the best of our knowledge, the correctness of definitions for

subpartitions has been first indipendently observed in
[MIcLO 2007], [HAJIABOLHASSAN, D. 2008],
AND [HELFFER, T. HOFFMANN-OSTENHOF, TERRACINI 2008].




Prologue

Justifications for definitions

Test function approximation

The equality v, (G) = 7,(G) = ¢,(G) shows that ¢, (G) can be
effectively approximated by test functions.

Subpartitions are richer

Computationally, a move from partitions to subpartitions usually
makes the problem easier!

(e.g. the polynomial time algorithm for minimum k-subpartition
problem [NaAGaMocHI, KAMIDOT 2007]).

There is evidence supporting the fact that subpartition residues
contain nontrivial information. Hence, the subpartition setup makes it :
possible to gain more information in an easier way! &




Prologue

Hardness of IPP

IPPM is polynomial (actually linear) time solvable for weighted trees
(even with potentials)!.

There exists an algorithm that given a weighted tree with rational
weights (and potentials!) on n vertices and an integer k, computes Li"'
and a minimizer in (nlog n)-time.




Case Study

The complete graph K,

Note that for every setA, C V,

—
|E(Ai)| - |A;‘(”7 |A:'|)
A, A

—n-— |Aa'|-

Thus, g,?"’(Kn) — Ef(”(K,,) = | g




The Petersen graph P for k = 3

Note that at least one of the parts is acyclic. Hence,

2
(P =H(P) =1+




Case Study

The case of trees

(All edge and vertex weights are equal to 1.)




The case of trees

(All edge and vertex weights are equal to 1.)




The case of trees

(All edge and vertex weights are equal to 1.)

111 1
M — . A i)
H(G) = max(x, 1. 1) = 1
1 21 1
M — —_ —_ =) = =
$3 (G)fmax(3,4,3) 2




Supergeometric

Definition

Combinatorially max-supergeometric graphs

A simple graph is said to be combinatorially max-supergeometric if
V1<k< |V| gk(G) - gk(G)'

Hereafter, in this talk the word supergeometric stands for the phrase
combinatorially max-supergeometric.




Supergeometric graphs

On supergeometric trees

Importance of the problem in theory

A move from a computationally hard problem NCP to a simpler one
PP is interesting by itself. Suergeometric graphs provide simple
instances of the hard problem. Hence, studying such graphs may
reveal properties that can simplify the original hard problem!
Definitely, for the case of trees with an efficient solutions to IPP this
can be considered as an effective solution to a subset of instances of
the original hard problem!




Supergeometric g

On supergeometric trees

Importance of the problem in applications

Note that supergeometry is a property that depends on the weights!
Also, it is known that connectivity (and hence clustering) can be
estimated through finding minimum spanning trees.

A crucial question is whether there exists an algorithm that given a
weighted graph the algorithm extracts a supergeometric minimum
spanning tree!

This is related to the existence of outliers and uniformity of data-set!







Supergeometric graphs

Small graphs

Note that [A| = {u} = 1 implies that ﬂ%& = deg(u).

K> is the only connected graph on two vertices and is supergeometric.
K3 and P3 are supergeometric.

K4, P4, C4 and S, (the star on four vertices) are supergeometric. The
other two cases will be discussed on the board! _ A







An alg

The algorithm to decide IPPY
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An alg

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.
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An alg

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.
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An algorithm

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.




An algorithm

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.
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An algorithm

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.
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An algorithm

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k

=4,
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An algorithm

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.
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An algorithm

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.
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An algorithm

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.
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An algorithm

The algorithm to decide IPPY

Edge weights=1, Vertex weights=(w, p), N = 1/10 and k = 4.
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Bipartition

Let {A;,A>} be a minimizer for ¢, and without loss of generality
assume |E(A1,A*)| < |E(A,A*)|, where A* ey (A1 UA,). Then

|E(A2UA")| _ |E(42)| = [E(A2,A%)| + [E(A1,A")| _ [E(42)]

A2 U A A2 + |A7] ~ Al




Connectedness of parts

There always exists a minimizer of ¢, (G) such that the induced graph
on any part is connected!

If there is no edge between A and B,

min(E(A) |E(B>|> _E@I+IE®)| _|E@AUB)
Al T8 )T AT+ B AUB




An example

The above fact is also true for ¢, but not for ¢, when K & {2, 3} in
general!

SUENOEES

Please listen to the discussion!



An example

Relations to the degree sequence

Letd < ---d < A be the degree sequence of G. Then, if
230 =~ d + 1 then G is not (|V| — 1)-geometric, and consequently, is
not supergeometric.

Relmark
This show that Ss, a star on 5 vertices, is not supergeometric. Note
that this is a minimal example of such a graph!

This result can be generalized a bit further!




Epilogue

Supergeometric graphs: some special cases

The case of regular graphs
If G is a d-regular graph and E(A) is the edge set of G[A], then

—
@) diAl-2E@)] L JE@)]
A Al Al
Hence,
|E(A:)]

¢(G) =d—2 max min
+(6) {AYeD(v) 1<i<k |A;]
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Thank you!

Comments and Criticisms are Welcomed

daneshgar@sharif.ir,
rjavadifoe.aut-aserr.




