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Theory of computation: Origins (computability)

Al-Kharazmi
(∼ 780-850 AD)

Kurt Gödel
(1906 - 1978)

The fundamental question in early days
Can we provide a computational solution to any problem?

3 / 56



ToC

A. Daneshgar

Outline

Motivations

History

Past

Present

Impacts

Future

Some fundamental questions to ask

Is it possible to precisely define the concepts
“computation" and “algorithm"?
Does any given problem have a constructive “algorithmic
solution"?
Do natural hard problems exist? what are the
consequences of answers YES or NO to this question?
Is it possible to find the best constructive algorithmic
solution to a given problem?

Note the practical importance as well as
the theoretical nature of these problems!

The history and results are fascinating and surprising!
Let’s talk about it.
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Prehistory < 1900

Abacus (∼ 3000 B.C.): Widely used for daily
computations (even some evidence of use in
Babylonia (present-day Iraq) around ∼ 3000
B.C.).
Elements of Euclid (∼ 300 B.C.): The first
rigorous axiomatization process in
mathematics (geometry) and the birthday of
the concept of a rigorous “proof".
Antikythera mechanism (∼ 80 B.C.):
Discovered in 1901, within an ancient Greek
shipwreck off the island of Antikythera.
Muhammad ibn Mūsā al-Khwārizmī (∼ 800
C.E.): Birthday of the concepts “algebra" and
“algorithm".
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Prehistory < 1900

Mechanical adding machine (∼ 1620− 1640):
Wilhelm Schickard, Blaise Pascal, Gottfried
Wilhelm Leibniz.
Difference Engine (1791− 1871): Charles
Babbage .
First program (1815− 1852): Ada Augusta
Byron, Countess of Lovelace.
Gottlob Frege (1848− 1925): Birthday of
modern logic.
Giuseppe Peano (1858− 1932): Standard
axiomatization of the natural numbers and
birthday of recursive definitions.
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A mathematical boost 1900− 1940

David Hilbert (1900): addressed the International
Congress of Mathematicians with three main
questions on computability.
Kurt Gödel (1930): Answered two important
questions on consistency and completeness.
Alan Turing (1936): Introduced a formal model
of a computer, the Turing machine, and the
halting problem.
Contributions of Church, Turing, Post, Kleene, ...
on the concept of computation and recursion
theory motivated by the concept of a proof of a
true mathematical statement.
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Digital computers 1940− 1950

Z3 (1941): the first operational, general-purpose,
program-controlled calculator built by Konrad Zuse.
Colossus (1943): Built by British to help Alan Turing
breaking the code behind the German machine, the
Enigma.
Mark I electromechanical computer (1944): The
calculations required for ballistics during World War II led
to this construction by Howard H. Aiken.
EDVAC (1944): Mauchly, Eckert, and John von Neumann.
ENIAC (1946): Built at the Moore School at the
University of Pennsylvania.
Invention of the transistor (1947): By John Bardeen,
Walter Brattain, and William Shockley.
Invention of magnetic core memory (∼ 1949): By Jay
Forrester.8 / 56



ToC

A. Daneshgar

Outline

Motivations

History

Past

Present

Impacts

Future

Compiler design 1950− 1960

Invention of the notion of a compiler (1951): By Grace
Murray Hopper at Remington Rand.

First FORTRAN compiler (1957): John Backus and others.

LISP and ALGOL (1958): John McCarthy and Alan Perlis,
John Backus, Peter Naur and others.

Integrated circuits (1959): Jack Kilby (Texas Instruments)
and Robert Noyce (Fairchild Semiconductor).
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The CS discipline 1960− 1970

The rise of automata theory and the theory of formal
languages (1960′s): Noam Chomsky, Michael Rabin and
others.

Computer science as a discipline (1962): The first
computer science department was formed at Purdue
University.

Theory of computation: A culmination of ideas coming from
digital design, compiler design, recursion theory and complexity.
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The rise of modern ToC 1970− 1980

Birthday of a scientific discipline

NP-completeness (1971): Stephen Cook’s seminal paper.
NP-completeness (1973): Leonid Levin’s article.
Design of CRAY-1 (1976): Seymour Cray.

Modern Theory of computation: Theoretical foundations for
digital circuit design, Compiler design, computability and

analysis of algorithms.
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Theory of computation: Origins
(old times up to 1936)

Numeric computations (3000 B.C. - Now): day-to-day life,
science and technology.

Geometry (3000 B.C. - Now): As a calculator before Descartes
and as one of the best axiomatized mathematical theories
afterwards.

Hilbert (1900): Can every true statement be proven
automatically (in a finitely axiomatized system)? (Note: at the
time no notion of a modern computer was available!)

Gödel’s incompleteness theorem (1931): In a finitely
axiomatized system which is strong enough to express the
arithmetic of natural numbers, some true statements are
unprovable!

Turing’s undecidability theorem (1936): Undecidable statements
(yes/no problems) do exist!

Church–Turing thesis (1936): A quest for a correct definition for
an “algorithm".
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Theory of computation: motivations (modern times)

(1940’s): Design and verification of digital systems.

(1950’s): Design and verification of software systems.

(1960’s): Design and verification of efficient numerical
algorithms.

Stephen Cook (1971) also Leonid Levin (1973): Existence
of natural NP-complete problems.

(1980’s): Analysis of yes/no problems through the theory
of formal languages.

(1990’s): Theory of computational complexity and design
of efficient algorithms, and inapproximability.
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Theory of computation: the coding trick

A problemtype P consists of the following data:
Constants: .......
Given input: .....
Query: ...........?

An example
Constants: 3.
Given input: the integer n.
Query: Is n divisible by 3?

Main question: How do you provide the data?
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Theory of computation: membership problem

The membership problemtype
Constants: Σ a finite set of alphabets and a subset
L ⊆ Σ∗.
Given input: a word x ∈ Σ∗.
Query: Is it true that x ∈ L?

Fact: Any yes-no problem as P can be reduced to a
membership problem for some subset (i.e. a language) LP .

Main question: How do you provide the data?
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A computational model (machine)

This leads to an interpretation of ToC as one of the variants to
provide finite presentations for infinite sets!

Such a finite presentation is a program or more abstractly a
computing machine consisting of:

A hardware (i.e. a control unit).
A memory.
A mechanism to read the input.
A mechanism to write the output.

working as a discrete dynamical system satisfying the local
property.
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Theory of computation: early impacts

There was a controversy regarding the definition of computation
during the early days.

Definition through computational machines.
Definition through constructional procedures
(i.e. grammars).
Definition through computable functions
(i.e. recursion theory).

Church-Turing thesis (1934-1937)
At the level of Turing machines all rational models of
computation are equivalent!
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Theory of computation: complexity measures

The fundamental questions
Do natural hard problems exist?
What are the consequences of answers YES or NO to this
question?

An investigation of our deduction process and our brain
functionality is among the most original motivations for
theory of computation, before any modern computer used
to be available!
This provides a strong link between “theory of
computation" and “mathematical logic" as the two most
basic and fundamental ways of providing finite
presentation!
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Theory of computation: complexity measures

Main Question: How much should we pay for a computation?

Typical cost functions
Time
Used memory
even more complex cost functions!

The variable: is the length of the input!

Main objective: Study the behaviour of the cost function!
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Theory of computation: P vs. NP

Acceptable (i.e. effective) cost functions
Early days (1960’s): Polynomially bounded functions.
Nowadays: low-degree polynomially bounded.
Trend (big data): O(n log n) or less!

The complexity class P
(1960’s: Cobham, Edmonds and Rabin)
Consists of all decision problems that can be solved by
polynomial-time bounded deterministic decider algorithms.

It is good if we can effectively (i.e. fairly easily) solve a problem!
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Theory of computation: P vs. NP

Fact
There exists a large number of fundamental decision problems
(say more than 2000) for which any claim for a solution can be
verified efficiently (i.e. in polynomial time), however, no
efficient (i.e. polynomial time) solver is known for any one of
these problems!

The complexity class NP
(1970’s: Cook, Levin, Karp)
Consists of all decision problems that can be solved by
polynomial-time bounded nondeterministic acceptor algorithms.

NP-Complete: The class of hardest problems in NP.
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Example for an NP-complete problem: Hamiltonian
Cycle
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An important question!

The fundamental questions
Do natural hard problems exist?

One has to formulate easy and hard!
We are not Zeus: hence it is generally believed that the
answer is YES!
It is astonishing that existence of hard problems is quite
important in modern technological applications!

A fundamental problem: Do hard problems exist?
i.e., P ?

= NP .
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Why this is important!

Natural hard problems are ideal primitives to be used when
one needs unsolvable problems in a given context (e.g.
cryptography!)
If there is no natural hard problem then it means that we
are ready to solve all given problems efficiently! Hence, one
should be careful about the term “natural"!
Think of an algorithm as a local discrete dynamical system
on a discrete domain. Then connectivity of the domain is
naturally related to the performance of the algorithm!
Hence, existence of natural computationally hard problems
somehow seems to be related to the non-existence of
highly connected discrete structures of given fixed volume!
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Theory of computation: 1 M$ Millennium Problems
(Clay institute 2000)

Seven problems each gives you $1 million at least!

P vs. NP

Determine the answer to the question P
?
= NP .

Riemann Hypothesis
The prime number theorem determines the average distribution
of the primes. The Riemann hypothesis tells us about the
deviation from the average. Formulated in Riemann’s 1859
paper, it asserts that all the ’non-obvious’ zeros of the zeta
function are complex numbers with real part 1/2.

There are 5 more problems and 4 more unsolved ones!
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On randomness, proofs and computation
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It seems that for the time being,
randomness

is our detour to handle our weakness in
algorithm design!

27 / 56



ToC

A. Daneshgar

Outline

Motivations

History

Past

Present

Impacts
Randomness

Expanders

Future

Randomness and usefulness of hard problems

A couple of fundamental problems:

Can one produce (i.e. simulate) almost ideal random bits?
Is randomness useful in computation? Can one use
randomness to get easier solutions?
Can one reproduce a large number of random bits using a
small number of ideal ones?
What does Riemann Hypothesis say about the set of
natural numbers?
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On the concept of a “Proof"

How to make sure that a claim is true?
A sound proof is a valid argument for the correctness of a
claim.

To make sure that a claim is true it is quite sufficient to
have/see/verify a proof of it!

However, to make sure that a claim is true it is also
sufficient to make sure that there exists a proof of it!!!!
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Example: the blind and the twins

Yellow Blue

Blue Yellow

Blue Yellow

Yellow Blue××

Dishonest Honest

30 / 56
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A challenging question!

What if the blind is not supposed to hide his random bits!

What if he is not also allowed to use randomness?

31 / 56
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Example: BPP and secure communication

BPP is the randomized counterpart of P.

The class BPP
A language L is in BPP if there exists a randomized algorithm
A such that

x ∈ L implies that Pr(A(x) = accept) > 3/4.
x ̸∈ L implies that Pr(A(x) = reject) > 3/4.

A fundamental problem: Do hard problems exist?
i.e., NP −BPP

?
= ∅.

32 / 56
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Example: BPP and secure communication

In secure communication:

It is assumed that everyone knows about the details of
algorithms ENC and DEC except the security parameter κ
(i.e. the key).
The adversary problem: {p | ∃ κ ENC(κ, p) = c} ∈ NP .
(oversimplified!)

NP −BPP = ∅ ⇒ there is no secure communication system!

Study of a possible converse is the subject of modern provable
cryptography!
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Probabilistic algorithms

Question 1:
Does randomness fundamentally help in computation? i.e. are
there problems with probabilistic polynomial-time algorithmic
solutions but no deterministic one?

Question 2:
Does NP require strictly more than polynomial time?
i.e. natural hard problems do exist!

At least one of the answers is NO!!
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Probabilistic algorithms

More on the story of random bits in computability!

On the existence of hard problems
Assuming factorization of integers has no efficient algorithm
implies P ̸= NP .

[Blum, Micali, Yao, Nisan, Impagliazzo, Wigderson]
Existence of hard problems (say P ̸= NP or something similar!)
implies the existence of Pseudo-random generators.
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Probabilistic proof system

A proof is an argument for a claim.
Main question: Is it valid?

∃ a probabilistic verifier V (claim, arg) for the claim, such
that

If the claim is true then V (claim, arg∗) = true for some
argument arg∗.
If the claim is false then V (claim, arg) = false for every
argument arg with probability more than 0.99.
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Probabilistic checkable proofs (PCP’s)

∃ a probabilistic verifier V (claim, arg) for the claim, such
that
the verifier only reads at most 10 bits of the argument at
random.

[Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy-Hastad]
Every proof can be efficiently transformed into a PCP!
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Applications

Assuming the existence of natural hard problems:

Non-approximability
Some NP-complete problems (e.g. MaxClique, MaxSat, ...) are
non-approximable!

Grading answer sheets
There exists a randomized procedure using which one can grade
the answer sheets of an exam in which one only reads at most
10 random characters from each sheet and the maximum
probability of giving a wrong grade is less than 0.0001!

Authentication
There exists a randomize procedure using which you can prove
to your bank on the Internet that you are YOURSELF without
revealing your electronic signature at all!38 / 56
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On randomness,

highly connected discrete structures

and Riemann Hypothesis
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Think of an algorithm as a local discrete-time dynamical
system on a discrete domain (i.e. configuration space).
The design problem is to construct such a system with a
guarantee for fast access from starting configurations to
accepting configurations using a limited number of
operations!
This definitely somehow is related to high connectivity of
the domain in these specific directions!
In a simplified randomized setting this turns into a global
guarantee (e.g. think of a fast mixing Markov chain as a
probabilistic algorithm!).
Hence, the whole thing for maximum efficiency is somehow
related to maximum connectivity of the configuration
space (either for some specific directions or globally)!

Let us talk about maximally connected discrete structures of a
fixed global measure.40 / 56
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Graphs and Matrices
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a
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c
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e



0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0


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Random bits

A fundamental problem
Design of pseudo-random generators, and extractors are among
the most fundamental problems in ToC, Engineering and
Science.
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Highly connected Random regular graphs

A fundamental problem
How may one construct a highly connected graph on n vertices
given only kn edges (for some constant k).
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Random regular graphs: main questions

0 dll 2

spectral gap

n

What can be said about the spectral gap?
What can be said about other connectivity related
parameters as chromatic number, expansion, Hamiltonicity
.....
Analysis of the extremal cases are usually quite challenging
problems.

44 / 56



ToC

A. Daneshgar

Outline

Motivations

History

Past

Present

Impacts
Randomness

Expanders

Future

Primes and Zeta Functions: definitions

Consider a geometric space made of primes and their
amalgams.
e.g. Q, number fields, function fields, Riemannian
manifolds, graphs, ...
The connectivity of the space is naturally related to
number of primes and how they are mixed together.
Connectivity is a fundamental concept that can be studied
and measured in many different ways.
A zeta (in general L) function is a mathematical concept
that is supposed to present and reflect all these aspects in
a reasonable way!
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Primes and Zeta Functions

Rational numbers

The Riemann zeta function ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

(1− p−s)−1

is related to Hecke operators but possibility for relation to a
natural diffusion is not fully understood yet.

Graphs

The Ihara zeta function ζ(u) =
∏

[P ] prime

(1−uℓ([P ]))−1 is related

to the adjacency operator and this relation is fully understood.

Apply u := q−s to compare!

46 / 56
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Ramanujan Graphs

Riemann Hypothesis (RH) for Q
If ζ(s) = 0 and 0 < Re(s) < 1 then Re(s) = 1/2.

Riemann Hypothesis (RH) for graphs (Ihara zeta func.)

If ζ(q−s)−1 = 0 and 0 < Re(s) < 1 then Re(s) = 1/2.

This is equivalent to the following:

Ramanujan graphs
A (q + 1)-regular graph with adjacency matrix A satisfies RH iff
it is Ramanujan, i.e. if

µ
def
= max{|λ| | λ ∈ Spec(A) & |λ| ≠ q + 1}

then µ ≤ 2
√
q.

47 / 56
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Spectrum of a Ramanujan Graph

Note: Regularity is d = q + 1.

0 dll 2

2 1d -2 1d- -

n

Nontrivial eigenvalues are small
The graph is sparse but highly connected
It is a good sparse approximation of a complete graph
Alon-Boppana 1986: We can not beat the bound 2

√
d− 1

asymptotically
The bound 2

√
d− 1 is the spectral radius of the infinite

d-regular tree (i.e. the universal cover!)
48 / 56
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Expanders

0 dll 2

2 1d -2 1d- -

n

Expanders are sledgehammers of ToC! They are used in:

Derandomization
Complexity theory
Error correcting codes
Compressed sensing
Communication networks
Approximate counting
Measure theory
Number theory
...49 / 56
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Ramanujan graphs of arbitrary degree

A. W. Marcus, D. A. Spielman, N. Srivastava, 2013+
Published in Annals of Mathematics (2015)
There exist (arbitrarily large enough) bipartite regular
Ramanujan graphs of arbitrary degree.

The proof is based on the fundamental technique of interlacing
families of polynomials which is also used by the same authors
to prove Kadison-Singer Problem.

50 / 56



ToC

A. Daneshgar

Outline

Motivations

History

Past

Present

Impacts
Randomness

Expanders

Future

A Royal Road to Mathematics

Propaganda!

Euclid of Alexandria (about 300 BC):
There is no Royal Road to geometry.

Discrete structure zoo
Mathematics of discrete structures is a Royal Road to the heart
of modern mathematics that is free to be used by any curious
scholar!

The road passes through Computer Science land of Oz!

51 / 56
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Some hot topics

Big data and fast (O(n log n)) algorithms.
Machine learning and foundations of AI.
Provable cryptography.
Quantum computation.
Theoretical biology.
Network theory and modeling.
Image processing and computer graphics.
Compressed sensing
Foundations of mathematics and programming.
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What next?
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Some speculations

Technologically we are moving into a new era of networks!
Hence, new paradigms of computability related to parallel
and distributed computing are going to be important
subjects in the field.
Considering AI and its importance in our future life and
technology, it is time to try to develop a sound and new
theory of intelligent computation and intelligent algorithms!
Brain has always been among the most sophisticated
computers of all time! It seems that understanding how our
brain works may lead to new paradigms for computability.
Our daily need for huge data processing asks for ultra-fast
efficient algorithms that are capable of processing huge
datasets. This naturally asks for new techniques to design
almost linear ultra-efficient algorithms as well as new
techniques for their analysis.

54 / 56
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A quotation!

In the prelude of “Récoltes et Semailles", Alexandre
Grothendieck makes the following points on the search for
relevant geometric models for physics and on Riemann’s lecture
on the foundations of geometry.
It must be already fifteen or twenty years ago that, leafing
through the modest volume constituting the complete works of
Riemann, I was struck by a remark of his “in passing".

... it could well be that the ultimate structure of space is
discrete, while the continuous representations that we make of
it constitute perhaps a simplification (perhaps excessive, in the
long run ...) of a more complex reality; That for the human
mind, “the continuous" was easier to grasp than the
“discontinuous", and that it serves us, therefore, as an
“approximation" to apprehend the discontinuous.
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Comments are Welcome

daneshgar@sharif.ir
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