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Chapter 20

Appendix

In this appendix we go through some basic definitions and notations. The notation “def= ” ought
to be read as “is defined to be”, and also “ : ” stands for the phrase “such that”. We sometimes
add some notes within the margins, where the notation → means “go to” or “see” what follows
this arrow. Also, for the texts appearing in the margins, the abbreviations “Chp.”, “Cor.”,
“Def.”, “Exm.”, “Exr.”, “Fig.”, “Not.”, “Prt”, “Pro.”, “Sec.” and “Thm.” stand for “Chapter”,
“Corollary”, “Definition”, “Example”, “Exercise”, “Figure”, “Notation”, “Part”, “Proposition”,
“Section” and “Theorem”, respectively. An important note of this type is “→ Assumptions”
which means that there is a general assumption within the corresponding paragraph. A list
of these assumptions can be found in the “Index” section of the book in front of the word Assumptions

“*Assumptions”.

20.1 Primitive concepts and notations
20.1.1 Numbers and sets
Intuitively, a set is a well-defined collection of distinct objects (for more on set theory1 e.g.
see []). Each of these objects is called an element or a member of the set. Sometimes, the
words collection and family are also used instead of set; but these words are usually used to
indicate sets whose elements are also sets or not necessarily distinct. Sets are usually referred
to by capital Latin letters where their elements are referred to by lower case ones. The notation
a ∈ A means that a is an element of the set A and a /∈ A indicates the opposite meaning. The → cardinality
size of a finite set A is denoted by |A|.

The sets of natural numbers, integers, rationals and reals are denoted by N, Z, Q and R,
respectively. For any real number r ∈ R we define the positive part of r, denoted by (r)+, as

(r)+
def
=

{
r r > 0
0 r ≤ 0.

The real number (r)− is defined similarly. Also, ⌊r⌋ stands for the largest integer that is less
than or equal to the real number r. Similarly, ⌈r⌉ stands for the smallest integer that is greater
than or equal to r.

Note that throughout this book the set of natural numbers, N, contains the element zero
denoted by 0. However, if we need to refer to positive (i.e. nonnegative and nonzero) elements,
we add a + sign as a superscript. For instance, N+ refers to the set of positive natural numbers.

1Although we try to be mathematically correct, but we do not intend to explain, in an axiomatic way, all
the details of a suitable set theory for what we need throughout the book. Section 20.1 mainly follows Zermelo-
Fraenkel set theory with axiom of choice added (i.e. ZFC), however, a student will not be needing the details
of such set systems. A better choice could be von Neumann-Bernays-Gödel (i.e. NBG) set theory that will be
used in Section 20.2, in which, intuitively, a student may always assume that the whole thing is happening in a
large enough universal set/class. What makes NBG more suitable for our context is the fact that it is finitely
axiomatizable. Anyhow, non of the details of such set systems affect our arguments in this book unless it is
explicitly stated otherwise.
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Also, for natural numbers m,n ∈ N with m ≤ n we define Jm,nKdef= {m,m + 1, . . . , n} and for
n ∈ N+ we define JnKdef= J1, nK.

A set without any element is called an empty set or a void set and is denoted by ∅. When
each member of a set A is also an element of a set B, we say that A is a subset of B and we
write A ⊆ B. Similarly, we write A ⊇ B if A is a superset of B. The expressions A ⊂ B and
A ⊃ B indicate that A is a subset or a superset which is not equal to B itself, respectively.
Clearly, every set is a subset of itself and the empty set is a subset of any set. For a set A,
the subsets A and ∅ are called the trivial subsets of A. Also, the family of all subsets of A is
called the power set of A and is denoted by P(A). If A and B are two sets, B ⊆ A and B ̸= A,
then we say that B is a proper subset of A. Two sets A and B are said to be equal if A ⊆ B
and B ⊆ A. This equality is denoted by the notation A = B. Note that each set is determined
completely by its members; thus, A and B are equal only when they contain the same elements.

If p and q are two mathematical propositions, p and q is a proposition which is true if
and only if both p and q are2 true. Also, p or q is a proposition which is true if and only
if at least one of the propositions p and q is true. The proposition p ⇒ q is false only when
p is true and q is false, and one reads “p implies q”. The proposition p ⇔ q is equivalent to
(p⇒ q) and (q ⇒ p) and therefore is true if and only if both propositions p⇒ q and q ⇒ p are
true, while one reads “p if and only if q” or “p and q are equivalent”. If A is a set and p(x) is
a proposition or a property about x ∈ A, then the notation ∃ x ∈ A, p(x) means that there is
at least one element a in A for which p(a) is true. Similarly, ∃! x ∈ A, p(x) stands for “there
exists a unique” quantifier. Finally, ∀ x ∈ A, p(x) means that for each member a in A, p(a) is
a true proposition.

Sets are usually written in the form {x ∈ U : p(x)} in which p(x) is a proposition or
property of a variable x in U where the set U is the universe or the universal set. Hence,
A = {x ∈ U : p(x)} means that A is the subset of all elements of U for which p(x) is true;
e.g. if N def

= {0, 1, 2, 3, . . .} is the set of all natural numbers, then the set of all even natural
numbers can be represented as {x ∈ N : ∃ y ∈ N, x = 2y}.

20.1.2 Relations and functions
Roughly speaking, if we order the members of a two-element set such that one of them is
regarded as the first and the other as the second member of the set, then we have an ordered
pair of the members of the set. In this case, if {a, b} is a two-element set and we choose a and b
as the first and second members, respectively, then the ordered pair (a, b) is obtained and vice
versa, if b and a are chosen as the first and the second elements, respectively, then we have
the ordered pair (b, a). Any definition for an ordered pair (a, b) is acceptable, if, firstly, the
definition indicates exactly that a is the first and b is the second member of the set {a, b}, and
secondly, two ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d; e.g. (a, b)
can be defined as the set {{a}, {a, b}} from which it is clear that a is the first and b is the second
member and the condition [(a, b) = (c, d)]⇔ [a = c, b = d] is also satisfied. This definition can
easily be generalized to any finite number of elements; e.g. the ordered triple (a, b, c) is defined
as ((a, b), c) in which a, b and c are respectively the first, the second and the third members of
a set {a, b, c}. Hence, an ordered quadruple (a, b, c, d) may be defined as ((a, b, c), d) and so on.

If A and B are two sets, the Cartesian product of A and B is denoted by A × B and is
defined as follows

A×B = {(a, b) : a ∈ A, b ∈ B},

i.e. A × B is the set of all ordered pairs (a, b) in which a ∈ A and b ∈ B. This definition can
also be extended to any finite number of sets; i.e. if A1 , A2 , . . . , An are a finite number of sets,
the Cartesian product A

1
×A

2
× . . .×A

n
is defined as

{(a1 , a2 , . . . , an) : a1 ∈ A1 , a2 ∈ A2 , . . . , an ∈ An}.

Clearly, A1× . . .×An = ∅ if and only if at least one of the sets A1 , A2 , . . . , and An is an empty
set. Also, An stands for the Cartesian product of n copies of A.

2Occasionally, one may use the notations “,” or “&” instead of Roman “and” in mathematical expressions.
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A relation R from a set A to another set B is a subset of A × B. If A = B, then we say
that R is a relation in A. If R is a relation from A to B, we write aRb to show that (a, b) ∈ R
and in this case we say that a is related to b by (or through) R.

Let R be a relation from A to B. The domain of R is denoted by dom(R) and is defined as

dom(R)
def
= {x ∈ A : ∃ y ∈ B, (x, y) ∈ R}.

The range or image of R is denoted by im(R) or ran(R) and is defined as

im(R) = ran(R)
def
= {y ∈ B : ∃ x ∈ A, (x, y) ∈ R}.

If R is a relation in A and dom(R) = A, then we say that “R is a relation on A” or that “R is
a total relation in A”. A relation R from A to B is said to be locally finite if

∀ x ∈ A, |{y ∈ B : (x, y) ∈ R}| <∞.

Also, the inverse of R is denoted by R−1 and is defined as → Exr. 20.3.1

R
−1 def

= {(y, x) ∈ B ×A : (x, y) ∈ R}.

It is obvious that (R
−1

)
−1

= R.
Let R be a relation from X to Y and S a relation from Y to Z. The composition of R and

S is defined to be a relation S ◦R such that

S ◦R def
= {(x, z) ∈ X × Z : ∃ y ∈ Y, (x, y) ∈ R and (y, z) ∈ S}.

It is easy to verify that for every three relations R from W to X, S from X to Y and T from
Y to Z we always have

T ◦ (S ◦R) = (T ◦ S) ◦R (the associative law),

(S ◦R)
−1

= R
−1

◦ S
−1

.

If R is a relation on a set X, then

• R is said to be reflexive, if for every x ∈ X we have xRx.

• R is said to be symmetric, if xRy implies yRx for all {x, y} ⊆ X.

• R is said to be transitive, if xRy and yRz imply xRz for all {x, y, z} ⊆ X.

• R is said to be antisymmetric, if xRy and yRx imply x = y for all {x, y} ⊆ X.

A partial function f (or a function f for short) from A to B, denoted by f : A −→ B, is a
relation from A to B such that for each a ∈ A there is at most one pair (a, b) in R. We say
that f(a) is defined if x ∈ dom(f), and that f(a) is undefined if [a /∈ dom(f) and a ∈ A]. In
this situation, to explain the rule, one may write a 7→ f(a), or one may explicitly define f as

f : A −→ B, f(a)
def
=

{
b a ∈ dom(f) and (a, b) ∈ f
undefined a /∈ dom(f) and a ∈ A.

If one also verifies that dom(f) = A, which means that f is defined for all a ∈ A, then the
function f is referred to as a total function or a map or a mapping, where we may use the
notation f : A •−→B for this concept to emphasize this situation. By definition, two functions
f : A −→ B and g : A −→ B are equal, if and only if, they are equal as relations in A × B.
Since ∅ × ∅ = ∅, the empty set can be regarded as a partial function with an empty domain.
If f : A −→ B and g : X −→ Y are two functions, then f and g are in fact two sets (i.e. as
relations) and therefore it is meaningful if one asks about whether one of them is a subset of
the other. If f ⊆ g, then we say that “f is a restriction of g” or that “g is an extension of f”.
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It is obvious that f is a restriction of g, if and only if, firstly, dom(f) ⊆ dom(g), and secondly,
for every x ∈ dom(f) we have f(x) = g(x).

Usually, when g : X −→ Y is a function and A ⊆ X, then the restriction of g to A is → Exr. 20.3.6
denoted by g|

A
; i.e.

g|
A

def
= {(x, y) ∈ f : x ∈ A}.

Let f : X −→ Y be a function. For each A ⊆ X, the set f(A) is called the image of A by f
and is defined as

f(A)
def
= {y ∈ ran(f) : ∃x ∈ A, y = f(x)},

in which case one may write f(A) = ran(f |
A
). For each B ⊆ Y , the set f−1

(B) is called the
inverse image of B under f and is defined as

f
−1

(B)
def
= {x ∈ dom(f) : f(x) ∈ B}.

For a set A, a total function f : A •−→ A is said to be the identity function on A, if for each
x ∈ A we have f(x) = x. In fact, the identity function on A is {(x, x) : x ∈ A} which is
denoted by Id

A
.

If A and B are two sets, then a total function f : A •−→B is called a constant function , if
for each x ∈ A, we have f(x) = b for a fixed member b ∈ B; i.e. a constant function is a total
function that maps all members to a fixed member of the range. In other words, the above
constant function is in fact the Cartesian product A× {b}. The symbols 1

A
and 0

A
stand for

the constant functions equal to one and zero on A, respectively.
Given a set A ⊆ U , the symbol χ

A
stands for a total function called the characteristic

function of the set A (with respect to U). Moreover, χa denotes the characteristic function of
the subset {a} ⊆ U when we always assume that the universe U is clear from the context, i.e.

χ
A
(x)

def
=

{
1 x ∈ A
0 otherwise,

and χ
a
(x)

def
=

{
1 x = a

0 otherwise.

A function f : X −→ Y is said to be one to one, if x
1
∈ dom(f), x

2
∈ dom(f) and x

1
̸= x

2

imply f(x1) ̸= f(x2) or equivalently, from f(x1) = f(x2) it follows that x1 = x2 , in which case
we may use the notation f : A

1−1−→ B to emphasize this situation. One of the simplest one to
one and total functions is the identity function on a set X. The total function f : X •−→P(X) → Exr. 20.3.2
with the rule f(x) = {x} is also one to one.

A function f : X −→ Y is said to be an onto, if ran(f) = Y ; i.e. for each y ∈ Y there
is at least one x ∈ X with f(x) = y, in which case we may use the notation f : A −→• B to
emphasize this situation. In this case, we say that f is a function from X onto Y .

If a total function f : X •−→Y is both one to one and onto, then we say that f establishes a
one to one correspondence betweenX and Y , in which case we may use the notation f : A←→ B
to emphasize this situation. In this setup, when X = Y , then one says that f is a permutation
on X.

The set of functions from a set A to a set B is denoted by F (A,B), while the set of total
functions from A to B is denoted by BA. → Exr. 20.3.5

If f : X → Y and g : Y → Z are two (partial) functions, then f and g are also two relations
and therefore, one may talk about their composition as two relations; i.e. g ◦ f is a function
from X to Z and for every x ∈ X we have,

(g ◦ f)(x) def
=

{
g(f(x)) if f(x) and g(f(x)) are both defined,

undefined otherwise.

This partial function is called the composition of f and g. The following statements are some → Sec. 20.2
corollaries of the previous definitions.

i) If f : X −→ Y is a function and there is a function g : Y −→ X with g ◦ f = Id
dom(f)

,
then f is one to one.

ii) If f : X −→ Y is a function and there is a function g : Y −→ X with g ◦ f = Id
X

, then
f is one to one and total.
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iii) If f : X −→ Y is a function and there is a function h : Y −→ X with f ◦ h = Id
Y
, then

f is onto.

iv) The composition of functions has the property of association; i.e. if A, B, C, and D are
sets, then for every three functions f : A −→ B, g : B −→ C and h : C −→ D we
have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

If f : X −→ Y is a function, then f is also a relation. Now, if f−1 , i.e. the set {(y, x) ∈ Y ×X :
(x, y) ∈ f} is also a function, then we say that f is invertible and f−1 is the inverse of f . The
following propositions can be derived from former concepts and definitions.

i) A function f : X −→ Y is invertible, if and only if f is one to one.

ii) Let f : X−→•Y be an invertible and onto function whose inverse is f−1

: Y −→ X. Then
f

−1 ◦ f = Id
dom(f)

and f ◦ f−1

= Id
Y
.

iii) Let f : X −→ Y be a function. Also, assume that there are two functions g : Y −→ X
and h : Y −→ X such that g ◦ f = Id

X
and f ◦ h = Id

Y
. Then, f is total, invertible and

onto. In addition, we have g = h = f
−1

.

iv) When a function is invertible, then its inverse is unique.

Two sets A and B are said to be equivalent, if and only if there exists a one to one correspondence
between them. In this case, we write A ∼ B.

Definition 1.20.1 Cardinality of sets We say that two sets A and B have the same
cardinality if and only if A ∼ B.  ▶

If k ∈ N def
= {0, 1, 2, 3, . . .}, then we define N0

def
= ∅ and for k ≥ 1, N

k

def
= {0, 1, . . . , k − 1}. A

set A is said to be finite, if and only if there is a natural number k ≥ 0 such that A ∼ N
k
, in

which case we say that the cardinality of A is equal to k and write |A| = k. If a set A is not
finite, we say that A is infinite.

The cardinality of N is defined to be ℵ
0
, read “aleph naught”. A set A is said to be countable,

if either A is finite or it is equivalent to the set of natural numbers N. Otherwise, we say that
A is uncountable. Note that, one of the most important countable sets is the set of rational
numbers denoted usually by Q which is defined as Q def

= {m/n : m,n ∈ Z, n ̸= 0} in which
Z denotes the set of integers defined as Z def

= {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
Here, we list some important properties for further reference. For more on set theory and

the theory of cardinals e.g. see [].

Proposition 2.20.1 Some basic properties of Cardinal numbers

i) The equivalence of sets, ∼, is an equivalence relation.

ii) If A ∼ B then P(A) ∼ P(B).

iii) If |A| = ℵ
0

and A is equivalent to a subset of N, then A is equivalent to N itself.

iv) The union of any two countable sets is countable.

v) The set P(N) is not countable.

20.1.3 Operations on sets
Let I be an arbitrary set and X a family of sets. If f is a one to one correspondence between
I and X; i.e. f is a one to one and onto map from I to X, then we say that the collection of
sets X is indexed by I and X is called an indexed family of sets. In this case, the image by f
of an element i ∈ I is denoted by A

i
, where we write X def

= {A
i
}
i∈I

. Here, if I = JnK, one may
also use the notation {A

i
}n

i=1
.

For any two sets A and B, the union of two sets A and B which is denoted by A ∪ B, is
defined as

A ∪B def
= {x : x ∈ A or x ∈ B}.
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Likewise, the union of n (n ∈ N) sets A1 , . . . , An is denoted by A1 ∪ . . . ∪ An or
n∪

i=1

Ai and is

defined as
n∪

i=1

A
i

def
= {x : x ∈ A

1
or . . . or x ∈ A

n
}.

In general, if {Ai}i∈I
is an indexed collection of sets, then the union of these sets which is

represented by
∪
i∈I

Ai , is defined as follows

∪
i∈I

A
i

def
= {x : ∃ i ∈ I, x ∈ A

i
};

i.e.
∪
i∈I

Ai is the set of all elements belonging to at least one of the sets Ai . If I = N, one may

write
∞∪
i=1

A
i

def
=

∪
i∈I

A
i
. Also, if X is a family of sets, then we define

∪
B∈X

B
def
= {x : ∃ B ∈ X, x ∈ B}.

The intersection of A and B is denoted by A ∩B and is defined as

A ∩B def
= {x : x ∈ A and x ∈ B}.

Similarly, the intersection of n sets A
1
, . . . , A

n
is represented by A

1
∩ . . . ∩ A

n
or

n∩
i=1

A
i

and is

defined as
n∩

i=1

Ai

def
= {x : x ∈ A1 , . . . , x ∈ An}.

In general, if {Ai}i∈I
is a family of sets, then their intersection is denoted by

∩
i∈I

Ai and is

defined as follows ∩
i∈I

Ai

def
= {x : ∀ i ∈ I, x ∈ Ai};

i.e.
∩
i∈I

A
i

is the set of those elements that belong to every A
i
. Similarly, when I = N, one may

write
∞∩
i=1

Ai

def
=

∩
i∈I

Ai . In particular, if the indexing set I is the empty set, then it follows from

the definitions that ∪
i∈I

Ai = ∅.

If X is a collection of sets, then we define∩
B∈X

B
def
= {x : ∀B ∈ X, x ∈ B}.

Two sets A and B are said to be disjoint, when A ∩ B = ∅. A family of sets {A
i
}
i∈I

are said
to be pairwise disjoint, if for every i ∈ I and j ∈ I with i ̸= j, A

i
∩A

j
= ∅.

Using the definitions, one may easily verify the following facts for every three sets A, B and
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C.

A = A ∩A and A = A ∪A. (idempotency)

A ∩B = B ∩A and A ∪B = B ∪A. (commutative laws)

A ∩ (B ∩ C) = (A ∩B) ∩ C and A ∪ (B ∪ C) = (A ∪B) ∪ C. (associative laws)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C). (distributive laws)

A ⊆ B ⇔ A ∪B = B ⇔ A ∩B = A.

In general, if A is a set and {A
i
}

i∈I
a collection of sets, then

A ∩ (
∪
i∈I

A
i
) =

∪
i∈I

(A ∩A
i
),

A ∪ (
∩
i∈I

Ai) =
∩
i∈I

(A ∪Ai).

If A and B are two sets, the difference of A and B which we denote by A−B is defined as

A−B def
= {x ∈ A : x ̸∈ B}.

If A ⊆ B ⊆ U , then B −A is said to be the complement of A with respect to B. In particular,
the complement of a set A with respect to U is denoted by Ac .

We conclude from the above definitions that if A and B are two arbitrary sets, then

(A ∩B)
c

= A
c

∪B
c

and (A ∪B)
c
= A

c

∩B
c

, (De Morgan laws)

∅
c

= U, U
c

= ∅ and (A
c

)
c

= A,

and generally, if {A
i
}

i∈I
if a family of sets, then

(
∩
i∈I

Ai
)
c
=

∪
i∈I

A
i

c and (
∪
i∈I

A
i
)
c
=

∩
i∈I

A
i

c. (generalized De Morgan laws)

Let f be a function from X to Y . If {A
i
}

i∈I
is a family of subsets of X and A and B are

arbitrary subsets of X, then

i) A ⊆ B ⇒ f(A) ⊆ f(B).

ii) f(
∪
i∈I

Ai) =
∪
i∈I

f(Ai).

iii) f(
∩
i∈I

Ai) ⊆
∩
i∈I

f(Ai).

iv) A ∩ dom(f) ⊆ f−1

(f(A)).

If {B
i
}

i∈I
is a collection of subsets of Y and B and C are subsets of Y , then

i) B ⊆ C ⇒ f
−1

(B) ⊆ f−1

(C).

ii) f−1

(
∪
i∈I

B
i
) =

∪
i∈I

f
−1

(B
i
).

iii) f−1

(
∩
i∈I

B
i
) =

∩
i∈I

f
−1

(B
i
).

iv) f−1

(B − C) = f
−1

(B)− f−1

(C).

v) f−1

(B
c ∩ Y ) = X ∩ (f

−1

(B))
c

.
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vi) f(f−1

(B)) ⊆ B.

For any two sets A and B the symmetric difference of A and B which is denoted by A∆B, is
defined to be

A∆B
def
= (A−B) ∪ (B −A).

Also, for every two sets A and B we have

i) A∆A = ∅.

ii) A∆B = B∆A. (commutativity)

iii) A∆U = A
c and A∆∅ = A.

Moreover, for any three sets A, B and C we have

A ∩ (B∆C) = (A ∩B)∆(A ∩ C). (distribution of ∩ with respect to ∆)

A∆(B∆C) = (A∆B)∆C. (associativity)

Concerning Cartesian products, the symbol An stands for the Cartesian product of n copies of
the set A, and A(n) is defined as,

A(n) def
=

∪
1≤m≤n

Am.

A relation R ⊆ A(n) ×B(n) is said to be a graded relation if for any 1 ≤ k ≤ n,

(a, b) ∈ R and a ∈ Ak ⇒ b ∈ Bk.

Also, note that any such graded relation can be identified with a subset R ⊆ (A×B)(n) that we
denote by the same notation R for clarity. Hence, in this setting, given a relation S ⊆ A× B,
one may talk about a graded relation R ⊆ S(n) ⊆ (A×B)(n).

20.1.4 Equivalence relations and partitions
A relation R on a set A is said to be an equivalence relation, if R is reflexive, symmetric and
transitive. As an example, the equality relation on a nonempty set A defined as

IdA
def
= {(x, x) : x ∈ A}

is itself an equivalence relation contained in every other equivalence relation. Suppose that R
is an equivalence relation on a nonempty set A. If a ∈ A, we define

[a]
R

def
= {b ∈ A : aRb}.

The set [a]
R

is called the equivalence class of a or equivalence class containing a with respect to
the relation R. Note that [a]

R
̸= ∅, since R is reflexive. Each one of the members of [a]

R
is said

to be a representative for the equivalence class containing a. The collection of all equivalence → Exr. 20.3.3
→ Exr. 20.3.4classes of members of A is denoted by A/R. Therefore, we define A/R def

= {[a]
R

: a ∈ A}.
An important example is the case of an onto map σ : A −→• B that gives rise to an → Sec. 7.3

equivalence relation ∼σ on A according to which

a
1
∼σ a2

⇔ σ(a
1
) = σ(a

2
).

The set of k-subpartitions of a set A, D
k
(A), is defined to be the set of all k-sets {B

1
, . . . , B

k
}

with ∅ ̸= B
i
⊆ A for all 1 ≤ i ≤ k such that for every pair 1 ≤ i < j ≤ k we have B

i
∩B

j
= ∅.

The set of k-partitions of a set A, which is denoted by Π
k
(A), is the subset of D

k
(A) that

contains all partitions {B
1
, . . . , B

k
} for which ∪k

i=1
B

i
= A. The sets of all subpartitions and

partitions of a set A are denoted by D(A) and Π(A), respectively.
The following important theorem and the following corollary connects the concepts parti-

tions to equivalence relations.
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Theorem 3.20.1 If R is an equivalence relation on a nonempty set A, then for every a
1
∈ A

and a
2
∈ A we have

[a
1
]
R
∩ [a

2
]
R
̸= ∅ ⇔ [a

1
]
R
= [a

2
]
R
⇔ a

1
Ra

2
.

in other words, every two equivalence classes are either equal or are disjoint and every a ∈ A
belongs to one and only one equivalence class; i.e. to [a]

R
.

Corollary 4.20.1 If R is an equivalence relation on a nonempty set A, then A/R is a partition
of A.

Note that the above theorem states in fact that two members a1 and a2 are related together
by R, if and only if, both of them are located in a same equivalence class and since the above
corollary implies that these equivalence classes constitute a partition, therefore, two elements
[a

1
]
R

and [a
2
]
R

are related together, if and only if, they belong to the same class of the partition.
This fact suggests that the converse of the previous corollary is also true; i.e. whenever we have
a partition ζ on a set A, an equivalence relation can be made from it in the following way.

Theorem 5.20.1 Let ζ ∈ Π(A) be a partition of a nonempty set A. Then, the relation R
defined on A as follows, is an equivalence relation on A and the collection of equivalence classes
obtained from this equivalence relation, is exactly the partition ζ,

a1R a2 ⇔ ∃ B ∈ ζ, a1 ∈ B and a2 ∈ B.

The second part of the above theorem states in fact that A/R = ζ. Usually, it is convenient
to denote this specific relation R, by the notation A/ζ. With this terminology, within the above
context may write

A/(A/ζ) = ζ.

20.1.5 Partial orders and well-ordered sets

Definition 6.20.1 Given a nonempty set X, a preorder on a set X is a relation on X which
is reflexive and transitive.  ▶

Preorders are usually denoted by “≤”. Therefore, a preorder such as ≤ on X is a relation on
X such that for every three members x, y and z in X, we have

x ≤ x,

(x ≤ y, y ≤ z)⇒ x ≤ z.

A preordered set is an ordered pair (A,≤) in which A is a nonempty set and ≤ is a preorder on
A. If x and y are two elements of a preordered set, then y ≥ x means that x ≤ y. Also, x < y
is equivalent to x ≤ y and x ̸= y. The symbol y > x is defined similarly. If x < y, we say that
x is strictly smaller than y or y is strictly greater than x.

If ≤ is a preorder on X and Y ⊆ X, then the set of ordered pairs (a, b) such that a ∈ Y
and b ∈ Y and (a, b) ∈≤ (i.e. a ≤ b), obviously constitutes a preorder on Y . This preorder is
said to be the induced preorder from X to Y . Since we usually indicate preorders by ≤, when
we speak about preordered sets (A,≤) and (B,≤), we assume that the difference between the
preorders are clear from the context.

Definition 7.20.1 A partially ordered relation or partial order on a set X is a preorder on X
which is also antisymmetric.  ▶

A partially ordered set or briefly a poset is an ordered pair (A,≤) in which A is a nonempty set
and ≤ is a partial order on A. If ≤ is a partial order on X and Y ⊆ X, then one may also talk
about the induced partial order from X to Y .

Example 8.20.1 Let F be a nonempty family of sets. The “inclusion” relation in F is defined
as,

⊂F
def
= {(A,B) ∈ F × F : A ⊂ B}.
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Then (F ,⊂F ) is a poset.  ⋄

Example 9.20.1 Let P be a nonempty subset of N. The “divisibility” in P is defined as,

≤
P

def
= {(a, b) ∈ P × P : ∃ q ∈ N, b = aq}.

Then (P,≤
P
) is a poset.  ⋄

Example 10.20.1 Hasse diagram
One may depict posets schematically usually called the Hasse diagram of the poset, which is

a simple graph whose vertex set is the poset itself drawn in different levels in which we draw an
edge uv upwards if u ≤ v (we sometimes use directed edges to emphasize the upward ordering).
For instance, let the set P in Example 9.20.1 be the set of divisors of 30; i.e

P
def
= {1, 2, 3, 5, 6, 10, 15, 30}.

Then the Hasse diagram of (P,≤P ) is the graph depicted in Figure 20.1.  ⋄

Definition 11.20.1 A total order relation or a linear order relation or a total order on a set
X is a partial order on X in which any two members x and y of X are comparable in the sense
that either x ≤ y or y ≤ x is true.  ▶

A totally ordered set or a linearly ordered set is an ordered pair (A,≤) such that A is a nonempty
set and ≤ is a total order relation on A. A totally ordered set is also called a chain.

Clearly, if (X,≤) is a totally ordered set and Y ⊆ X, then the induced partial order from
X to Y is also a total order on Y called the induced total order on Y .

Definition 12.20.1 Let (P,≤) be a poset and B a subset of P .

i) An element u ∈ P is said to be an upper bound of B (in P ), if for every b ∈ B, u ≥ b.

ii) An element u
0
∈ P is called the least upper bound or the supremum of B (in P ), if u

0
is

an upper bound of B and for any other upper bound of B such as u we have u0 ≤ u.

iii) A element l ∈ P is a lower bound of B (in P ), if for every b ∈ B, v ≤ b.

iv) An element v
0
∈ P is the greatest lower bound or infimum of B (in P ), if v

0
is a lower

bound of B and for every other lower bound of B such as v, we have v
0
≥ v.

v) An element m ∈ P is a maximal element of P , if for every a ∈ P , a ≥ m implies that
a = m; i.e. no member of P is strictly greater than m.

vi) An element m ∈ P is a minimal member of P , if for every a ∈ P , from a ≤ m it follows
that a = m; i.e. no member of P is strictly smaller than m.

30

6 10 15

2 3 5

1

Figure 20.1 – A Hasse diagram (see Example 10.20.1).
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vii) An element m ∈ P is the minimum or initial or the least member of P , if for every a ∈ P ,
m ≤ a.

viii) An element m ∈ P is the maximum or terminal or the greatest member of P , if for every
a ∈ P , m ≥ a.

 ▶

Example 13.20.1
Consider the poset (P

def
= {a, b, c, d, e},≤) whose Hasse diagram is depicted in Figure 20.2.

Then, for this poset,

• The element a is the maximum and a maximal element of P .

• The poset has no minimum element, however, d and e are minimal elements of P .

• The set {d, e} is the set of lower bounds of the subset {a, b, c}.

• Since the set {d, e} has no maximum element, the infimum of the subset {a, b, c} does not
exist, while its supremum exists and is equal to a ∈ {a, b, c}.

• The supremum of the subset {b, c} exists and is equal to a ̸∈ {b, c}.

 ⋄

It is clear that if a subset B of P has a supremum (resp. infimum, maximum or minimum),
then it is unique. The supremum (respectively, infimum) of a subset B (if it exists), is usually
denoted by supB (resp. inf B). If B has an upper (resp. a lower) bound, then we say that B
is bounded above (resp. bounded below). Also, B is called bounded, if it is both bounded above
and below. If {x

i
}

i∈I
is a collection of elements of a poset P which has a supremum (resp.

an infimum) in P , then its supremum (resp. infimum) is represented by sup
i∈I

x
i

or
∨
i∈I

x
i

(resp.

inf
i∈I

x
i
or

∧
i∈I

x
i
). Also, if B ⊆ P has a supremum (resp. an infimum), then it is denoted by sup

b∈B

b

or
∨
b∈B

b (resp. inf
b∈B

b or
∧
b∈B

b). Finally, if {a, b} has a supremum (resp. an infimum), then it is

usual to write a ∨ b def
= sup {a, b}(resp. a ∧ b def

= inf {a, b}).

Definition 14.20.1 Let X and Y be two posets and f : X •−→ Y a map.

i) f is increasing (resp. strictly increasing), if

∀ a, b ∈ X, a ≥ b⇒ f(a) ≥ f(b).

(resp. ∀ a, b ∈ X, a > b⇒ f(a) > f(b).)

ii) f is decreasing (resp. strictly decreasing), if

∀ a, b ∈ X, a ≤ b⇒ f(a) ≤ f(b).

(resp. ∀ a, b ∈ X, a < b⇒ f(a) < f(b).)

a

b c

d e

Figure 20.2 – The Hasse diagram of the poset ({a, b, c, d, e},≤) (see Example 13.20.1).
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iii) f is order isomorphism or briefly isomorphism, if f is increasing, one to one and onto.

iv) f is dual order isomorphism or briefly dual isomorphism, if f is decreasing, one to one
and onto.

v) f is a monomorphism, if f is increasing and one to one.

vi) X is said to be isomorphic (dual isomorphic) to Y, if there is an isomorphism (dual
isomoprphism) from X to Y .

 ▶

Proposition 15.20.1 Let X, Y and Z be three posets.

i) If f : X •−→ Y is an isomorphism (resp. dual isomorphism), then f is strictly increasing
(resp. strictly decreasing).

ii) Every poset X is isomorphic to itself. If X is isomorphic to Y, then Y is also isomorphic
to X. If X is isomorphic to Y and Y is isomorphic to Z, then X is isomorphic to Z.
Consequently, if {X

i
}

i∈I
is a family of posets, then the following relation defined on the

family is an equivalence relation.

∀ i, j ∈ I, X
i
R X

j
⇔ There is an isomorphism from X

i
to X

j
.

Thus, if X is isomorphic to Y , then Y is also isomorphic to X and in this case we say simply
that X and Y are isomorphic.

Proposition 16.20.1 Let X and Y be two posets, f : X •−→Y an isomorphism, g : X •−→Y
a dual isomorphism and {x

i
}

i∈I
a collection of elements of X.

i) A necessary and sufficient condition for
∨
i∈I

x
i
(resp.

∧
i∈I

x
i
) to exist in X is that

∨
i∈I

f(x
i
)

(resp.
∧
i∈I

f(x
i
)) exists in Y and if this is the case, then

f(
∨
i∈I

x
i
) =

∨
i∈I

f(x
i
).

(resp. f(
∧
i∈I

xi) =
∧
i∈I

f(xi).)

In particular, if a, b ∈ X, then f(a ∧ b) = f(a) ∧ f(b). (resp. f(a ∨ b) = f(a) ∨ f(b).)

ii) A necessary and sufficient condition for
∨
i∈I

x
i
(resp.

∧
i∈I

x
i
) to exist in X, is that

∧
i∈I

g(x
i
)

(resp.
∨
i∈I

g(x
i
)) exist in Y and then

g(
∨
i∈I

xi) =
∧
i∈I

g(xi).

(resp. g(
∧
i∈I

x
i
) =

∨
i∈I

g(x
i
).)

In particular, if a, b ∈ X, then g(a ∨ b) = g(a) ∧ g(b). (resp. g(a ∧ b) = g(a) ∨ g(b).)

Proposition 17.20.1 Let X and Y be two posets and f : X •−→ Y and g : X •−→ Y be
isomorphism and dual isomorphism, respectively. Then,

i) a is a maximal (resp. minimal, maximum, infimum) element of X, if and only if f(a) is
a maximal (resp. minimal, maximum, infimum) element of Y .
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ii) a is a maximal (resp. minimal, maximum, infimum) element of X, if and only if g(a) is
a minimal (resp. maximal, minimum, maximum) element of Y .

Two important properties of N, the set of natural numbers, is its well-orderedness and the
validity of induction principle in its structure. The well-orderedness of N means that every
nonempty subset of N has a least member. The induction principle in N says that if S is a
subset of N such that 1 ∈ S and if n ∈ S then n+ 1 ∈ S, then, S = N. It follows immediately
from this principle that if p(n) is a property about a nondistinguished natural number n in
such a way that p(1) is true and the validity of p(n) implies the correctness of p(n + 1), then
p(n) is true for all n ∈ N. What follows is motivated by generalizing these concepts.

Definition 18.20.1 Let A be a poset. We say that A satisfies the descending chain condition
or briefly, DCC, if every nonempty subset of A has a minimal member. A totally ordered set
or a chain satisfying DCC is said to be a well-ordered set.  ▶

If A satisfies DCC and a ∈ A, then the set {x ∈ A : x < a} is called the initial section
defined by a and is denoted by s(a). When we speak about a section of A, or when we say that
a set B is a section of A, our purpose is a section defined by a member a ∈ A.

Posets satisfying DCC have some properties similar to N making it possible to extend
induction principle to a more general setting.

Theorem 19.20.1 (The generalized induction principle). Let (A,≤) be a poset satisfying
DCC and assume that p(x) is a proposition defined for every x ∈ A. In addition, assume that

i) p(x) is true for every minimal member of A.

ii) For every a ∈ A, the truth of p(x) for all members of s(a) implies the truth of p(a).

Then, p(x) is true for all x ∈ A.

Note that Condition (i) automatically follows from Condition (ii), since if a is a minimal member
of A, then s(a) = ∅ and there is no member x ∈ s(a) for which p(x) is false.

20.1.6 Algebraic Structures
Here we go through our first steps to introduce an abstract mathematical theory, which, in-
evitably, asks for an abstract language. The student who is not familiar with modern mathe-
matics, not only may not be able to understand the importance of this abstraction, in particular
in computer science, but also may find the new concepts and definitions quite hard to digest;
however, it is well known that the idea of considering mathematical objects as sets with struc-
tures which satisfy some global properties, known as axioms, has deeply influenced the whole
mathematics during the last century. We have decided to choose an approach along this line
of development because we believe in its global advantages, although, we hope that, at the
beginning, the student can overcome this rigidity of subjects by spending a good time on the
examples and exercises.

Algebraic structures3 are among the most popular mathematical structures, and maybe,
besides their primitivity, one of the basic reasons for this is that they have been evolved from
the ordinary number systems with their well–known operations such as addition, subtraction
or multiplication. Strictly speaking, an algebraic structure is a nonempty set X along with a
number of operations on it such that these operations satisfy some axioms. In this, the first
thing which should be made clear is the concept of an operation.
Consider the set of natural numbers, N, with addition and subtraction of numbers. Should we
consider these two as operations on this set? Note that when we are talking about an operation
on a set X, intuitively, we are talking about a black–box whose inputs and output are from the
set X (see Figure 20.3). This simple observation has a number of important consequences.
The first of these is that for any set of inputs we should get an output which is in X. This is
usually referred to as well–definedness or closeness of the operation. For instance, subtraction
can not be considered as an operation on N, since 1− 2 is not an element of N.
Now if one tries to explain the above scenario mathematically, one obtains the following defi-
nition.

3Reference to the History and Kharazmi
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operation f

X ∋ x1

X ∋ x2

X ∋ xn

... f(x1 , x2 , . . . , xn) ∈ X

Figure 20.3 – An n–ary operation on the set X.

Definition 20.20.1 An n-ary operation (n ≥ 0) on the nonempty set X is a map

f : Xn −→ X,

where each component of the domain of f is called an operand of f . Note that, 1-ary op-
erations are usually called unary operations, while 2-ary operations are usually called binary
operations. Also, by definition, a nullary (0-ary) operation on a nonempty set X is also defined,
pathologically, as choosing a fixed element of X.  ▶

The second observation is a matter of notation and is among the most basic reasons for
further misunderstandings. We try to clarify it in the following example.

Example 21.20.1 Consider addition, (+), as a binary operation on the set of natural
numbers N. Now, note that in our current language this is a map such as

+ : N× N •−→ N,

which means that in order to show 2+3 = 5 we should write +(2, 3) = 5. This may seem to be
absurd at first, however, when one considers n–ary operations for n > 2 then the new language
shows its efficiency. It is also clear that (+) has two operands with the same role since addition
is a commutative operation on N.
If we fix one operand of an n–ary operation when n > 1, then we obtain an (n−1)–ary operation,
while the usual notation does not seem to be quite appropriate for these kind of manipulations.
For instance, consider the operation of addition by 7 on N which is easily explained by the
following map in our new language,

+(7, .) : N •−→ N.

In this, our notation for the new operation is to put the fixed values in their own place. This
shows that in order to compute the value of the new operation one can put the value of the
operand in place of the dot and apply the old operation.
As one more example, let f : N3 −→ N be a 3–ary operation on natural numbers and assume
that we want to consider the new 1–ary operation which can be obtained by fixing the values
of the first and the third operands to 2 and 11 respectively. Then this new operation can be
shown as follows,

f(2, ., 11) : N −→ N.

Throughout this book we may switch between these languages freely and we hope that it will
cause no further ambiguity.  ⋄

The third observation is more fundamental and can be considered as one of the motivations
for the whole abstract approach which comes in the sequel.

Example 22.20.1 Consider the set of integers Z def
= {. . . ,−2,−1, 0, 1, 2, . . . } with subtraction

as an operation on it. What is the type of this operation?
Based on our intuition, we are accustomed to consider it as the following binary operation,

− : Z× Z −→ Z,

which sends (x, y) to x− y; although, in this approach we should be already familiar with rules
such as −(−y) = y. Now the first question which comes to mind is “Why should such equations
hold?”
This motivates the following reformulation which considers “−” as the following
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1–ary operation,
− : Z −→ Z,

which sends x to −x. Naturally, in this approach we shall interpret x − y as x + (−y). But
this is actually an special kind of composition of these operations as maps and can be written
in our new notation as

+(.,−(.)) : Z× Z −→ Z.

 ⋄
Strictly speaking, and algebraic structure is a set with a couple of operations on it that satisfy

some properties (called axioms) themselves or in relation to each other. In what follows you
will encounter some basic and fundamental algebraic structures as monoids and lattices , where
we will discuss the whole thing once more in Section 20.2.2 from a more general viewpoint.
The part of mathematics that studies algebras themselves (rather than specific examples, i.e.
models) is called universal algebra in which one develops standard algebraic constructions as
subalgebras, quotient algebras, as well as more sophisticated constructions and classifications
(e.g. see []). In this book, we encounter pre-automata as very simple examples of algebras −→ Sec. 7.2
and we will use these techniques in this special case to study and characterize these simple
computers as algebraic structures.

In what follows, we briefly recall some basic properties of a couple of the most important
algebraic structures in theory of computation, namely monoids and lattices.

Monoids and words

In this section we introduce monoids as one of the most basic algebraic structures, along with
one the most important examples of which with a central role in theory of computation, namely
the set of finite words constructed using a finite set of symbols.

Definition 23.20.1 A monoid (M, e, ∗) is a nonempty set M along with a nullary operation
e ∈M and a binary operation (∗) on M such that

M1) ∀ x, y, z ∈ G x ∗ (y ∗ z) = (x ∗ y) ∗ z,

M2) ∃ e ∈ G ∀ x ∈ G x ∗ e = e ∗ x = x,

The element e ∈ M is called the (twosided) identity element . A monoid (M, ∗) is said to be → Exr. 20.3.7
Abelian or commutative if it satisfies the following extra property,

M3) ∀ x, y ∈ G x ∗ y = y ∗ x.

The property (M1) is usually called the associative law. Note that one usually writes xy for
x ∗ y if there is no ambiguity. A pair (M, ∗) that only satisfies property (M1) is usually called
a semigroup.  ▶ → Exr. 20.3.8

Example 24.20.1 Some basic monoids
As some simple examples one can easily see that (N, 0,+), (Q, 0,+), (R, 0,+) and (R, 1,×)

are all examples of commutative monoids.  ⋄

Example 25.20.1 Free monoid of words
Let Σ be a finite set of symbols. A sequence of elements of Σ of length n is an ordered

n-tuple (w1 , w2 , . . . , wn) ∈ Σn of elements of Σ. Similarly, a string (sometimes called a word)
of elements of Σ of length n is a ordered list of n symbols from Σ as w1w2 . . . wn . It is clear

that there is a one to one correspondence between strings of length n and sequences of length n
of elements of Σ, since both sets are equivalent to the set of total functions from N

n
to Σ. For

this, we use the same notation Σn for both concepts.
Hence, one may define the set Σ∗, consisting of all finite strings whose symbols are chosen

from Σ. In other words, define

Σ∗ def
= {w

1
w

2
. . . w

n
: n ∈ N and ∀ i ∈ J1, nK, w

i
∈ Σ} =

∪
n∈N

Σn.
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In this setting, we emphasize that, the length of a word w = w
1
w

2
. . . w

n
, denoted by |w| is

defined to be equal to n, when ϵ is the null word of length zero (i.e. |ϵ| = 0). Also, for Υ ⊆ Σ
we define |w|

Υ
as

|w|Υ
def
= |{wi : 1 ≤ i ≤ n and wi ∈ Υ}|, and |w|a

def
= |w|{a} .

Moreover, we define Σ0 def
= {ϵ} and Σ+ to be the following set,

Σ+ def
= Σ∗ − {ϵ} =

∪
n∈N+

Σn.

Also, the concatenation of two words w ∈ Σ∗ and z ∈ Σ∗ is a binary operation on Σ∗ defined
as follows,

w.z
def
= wz ∈ Σ∗.

It is easy to verify that for any finite set of symbols Σ, the algebraic structure (Σ∗, ϵ, .)
consisting of the set of all finite words Σ∗, along with the null word ϵ and the concatenation
operation is a monoid which is not commutative. This is also called the free monoid constructed
(or generated) by Σ.  ⋄

Definition 26.20.1 Let Σ be a finite set of symbols, and consider the word w = w
1
w

2
. . . w

n

along with its corresponding function σ
w
: J1, nK •−→ Σ. Then

• Any word corresponding to a restriction as σ
w
|J1,mK for some 1 ≤ m ≤ n is called a prefix

of w.

• Any word corresponding to a restriction as σ
w
|Jm,nK for some 1 ≤ m ≤ n is called a suffix

of w.

• Any word corresponding to a restriction as σ
w
|Jt,mK for some 1 ≤ t ≤ m ≤ n is called a

infix of w.

The sets of prefixes, suffixes and infixes of a sequence w are denoted by Prefix(w), Suffix(w)
and Infix(w), respectively.

Also, given a word w = w
1
w

2
. . . w

n
, the interval centered at w

i
of radius k, is defined to be

the infix w[i, k] def= w
s
. . . w

i
. . . w

t
where s = max(i− k, 1) and t = min(n, i+ k). The notation

d
Υ
(w) stands for minimum of |j − i− 1| where i ̸= j, w = w

1
w

2
. . . w

n
and (w

i
, w

j
) ⊆ Υ2.

In this setting, the word wR, defined as wR def
= wnwn−1 . . . w1 , is called the reverse of the

word w, and it is easy to verify that for any two words u and w in Σ∗ we have (wR)R = w and
(uw)R = wRuR.  ▶

It is easy to verify that Σ∗ is a countable set. In what follows we consider some other important → Exr. 20.3.9
order relations on this set.

Example 27.20.1 The prefix order on Σ∗

Given a finite set of symbols, Σ, the prefix order, ⪯, is defined on Σ∗ as follows,

u ⪯ w ⇔ [u is a prefix of w].

Naturally, ≺ stands for the strict order, for which u ≺ w means that u ⪯ w and u ̸= w. Clearly,
≺ is a partial order on Σ∗ and introduces a poset structure on this set (see Figure 20.4 for the
Hasse diagram).  ⋄

Example 28.20.1 The lexicographic order on Σ∗

Given a finite totally ordered set of symbols, Σ = {s1 , s2 , . . . , sk}, with s1 < s2 < . . . < s
k
,

the strict lexicographic order, ≪, is defined on Σ∗ as follows,

u≪ w ⇔ [(u ≺ w) or (u = vsiz1 , and w = vsjz2 , and si < sj )].

Note that, in the lexicographic order either u = w or u ≪ w, and consequently, one deduces
that this induces a total order structure on Σ∗. It is instructive to note that the lexicographic
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order can be visualized as going “up” or “left to right” within the Hasse diagram of the prefix
order depicted in Figure 20.4.  ⋄

. . . ... . . . ... . . . ... . . . ... . . . ... . . . ... . . . ... . . . ...
s1s1s1 . . . s1s1sk s1sks1 . . . s1sksk sks1s1 . . . sks1sk sksks1 . . . sksksk

. . . ... . . . ...
s1s1 s1s2 . . . s1sk sks1 sks2 . . . sksk

. . . ...
s1 s2 . . . sk

ϵ

Figure 20.4 – The Hasse diagram of ({s1 , s2 , . . . , sk}
∗,⪯) (see Example 27.20.1).

Example 29.20.1 Homomorphisms on words
Since Σ∗ along with the concatenation operator is a monoid, one may think of homomor-

phisms of these algebraic structures and for two finite sets Σ and Γ define a map σ : Σ∗ •−→Γ∗

to be a homomorphism if for any pair of words u and w in Σ∗ the following equality holds, → Exr. 20.3.12

σ(uw) = σ(u)σ(w).

Note that, since Σ∗ with the concatenation operator is a free monoid any map f : Σ•−→Γ may
be extended to a homomorphism σ

f
: Σ∗ •−→ Γ∗ in a unique way.  ⋄ → Exr. 20.3.13

Example 30.20.1 Formal languages
Let Σ be a finite set of symbols. Then any subset of Σ∗ as L ⊆ Σ∗ is said to be a formal

language in Σ∗; while this choice of name is a reminiscent of the set of words of a natural
language, say English language, in {a, b, . . . , z}∗.

Within this setting, for two languages K and L in Σ∗ the concatenation of K with L,
denoted by KL, is defined as, → Exr. 20.3.8

KL
def
= {uv : u ∈ K and v ∈ L}.

Then, following similar nomenclature of Example 25.20.1, one may talk about the language Ln

where L0 def
= {ϵ}. Also, we may define L∗ and L+ as

L∗ def
=

∪
n∈N

Ln, and L+ def
=

∪
n∈N+

Ln.

Within the same spirit, a language L is said to be ϵ-free if ϵ ̸∈ L, and moreover, we define the
reverse of a language L, denoted as LR, as

LR def
= {wR : w ∈ L}.

Also, the right quotient, L/K (sometimes denoted as LK−1), and the left quotient, K\L (some-
times denoted as K−1L), are defined as follows, → Exr.20.3.10

L/K
def
= {w ∈ Σ∗ : ∃ u ∈ K, wu ∈ L} and K\L def

= {w ∈ Σ∗ : ∃ u ∈ K, uw ∈ L}.

When K = {x}, for simplicity, we write, L/x and x\L for L/{x} and {x}\L, respectively.  ⋄
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Lattices

Lattices are posets that also can be defined as algebraic structures. Let us begin with a couple
of definitions.

Definition 31.20.1
If ∗ is a binary operation on a nonempty set A, then

i) The operation ∗ is idempotent, if and only if ∀ a ∈ A, a ∗ a = a.

ii) The operation ∗ is commutative, if and only if ∀ a, b ∈ A, a ∗ b = b ∗ a.

iii) The operation ∗ is associative, if and only if ∀ a, b, c ∈ A, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

 ▶

Definition 32.20.1
A semilattice is a nonempty set A with a binary operation ∗ defined on it which is idempo-

tent, commutative and associative. In this case, the semilattice is denoted by (A, ∗).
A poset (P,≤) is said to be a meet semilattice (resp. join semilattice), if every two members

of P have an infimum (resp. supremum) in P . A poset (P,≤) is said to be complete, if every
nonempty subset of which has supremum and infimum. A poset (P,≤) is conditionally complete,
if every nonempty bounded subset of which has supremum and infimum.  ▶

If (P,≤) is a meet (resp. join) semilattice and x, y ∈ P , the infimum (supremum) of them in
accordance with the previous notations is denoted by x ∧ y (resp. x ∨ y). If P is a meet (resp.
join) semilattice, the binary operation ∗ on P can be defined as a ∗ b := a∧ b (a ∗ b := a∨ b) for
all a, b ∈ P . It is convenience to note this operation with the same notation ∧ (resp. ∨).

Proposition 33.20.1 If (P,≤) is a meet (resp. join) semilattice, then the binary operation
∧ (resp. ∨) assigning to each pair of members a, b ∈ P their infimum (resp. supremum) is
idempotent, commutative and associative. Thus, (P,∧) (resp. (P,∨)) is a semilattice.

Proposition 34.20.1 If (P,≤) is a meet (resp. join) semilattice, then for every a, b ∈ P

a ≤ b⇔ a ∧ b = a,

(resp. a ≤ b⇔ a ∨ b = b).

The proposition 34.20.1 states in fact that the partial order relation ≤ on a meet (resp.
join) semilattice can be formulated completely by the operation ∧ (resp. ∨). The important
fact is that the converse of this statement is also true; i.e. when a semilattice is given, it can
be made into the structure of a meet or join semilattice.

Proposition 35.20.1 Let (A, ∗) be a semilattice. Define the relation ≤
1

on A as follows.

∀ a, b ∈ A, a≤
1
b⇔ a ∗ b = a.

Then, ≤
1

is a partial ordering on A and (A,≤
1
) is a meet semilattice in which a ∧ b = a ∗ b.

In the same mannar, if (A, ◦) is a semilattice and we define the relarion ≤
2

on A as

∀ a, b ∈ A, a≤
2
b⇔ a ◦ b = b,

then ≤
2

is a partial order relation and (A,≤
2
) is a join semilattice such that a ∨ b = a ◦ b.

Proof. Since ∗ is idempotent, for every a ∈ A we have a ∗ a = a and so a≤
1
a, i.e. ≤

1
is

idempotent. Let a, b ∈ A, a≤
1
b and b≤

1
a. Then, a ∗ b = a and b ∗ a = b. Since ∗ is

commutative, a∗ b = b∗a and so a = b, i.e. ≤
1

is antisymmetric. Assume that a, b, c ∈ A, a≤
1
b

and b≤
1
c. Then, a ∗ b = a and b ∗ c = b. We infer that

a ∗ c = (a ∗ b) ∗ c = a ∗ (b ∗ c) = a ∗ b = a,
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i.e. a≤
1
c. Thus, ≤

1
is transitive and is a partial order relation on A. We now show that for

every a, b ∈ A, a ∧ b = a ∗ b. Since

(a ∗ b) ∗ a = a ∗ (b ∗ a) = a ∗ (a ∗ b) = (a ∗ a) ∗ b = a ∗ b,

we have (a ∗ b) ∗ a = a ∗ b and therefore a ∗ b≤
1
a. By the same reason, a ∗ b≤

1
b. Suppose that

c ∈ A and c≤
1
a and c≤

1
b. Then, c ∗ a = c and c ∗ b = c. It follows that

c ∗ (a ∗ b) = (c ∗ a) ∗ b = c ∗ b = c,

i.e. c≤
1
a ∗ b. In other words, a ∗ b is the same as a ∧ b.

It is proved by the same manner that (A,≤
2
) is a join semilattice in which a ∨ b = a ◦ b for all

a, b ∈ A.

Definition 36.20.1 A poset (P,≤) is said to be a lattice, if (P,≤) is simultaneously a meet
and a join semilattice.

A lattice (P,≤) is said to be distributive, if

i) ∀ a, b, c ∈ P, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

ii) ∀ a, b, c ∈ P, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

 ▶

Theorem 37.20.1 If (P,≤) is a lattice, then the binary operations ∧ and ∨ are idempotent, → Exr. 20.3.14
commutative and associative. In addition,

∀ a, b ∈ P, a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

Conversely, let (A, ∗, ◦) be a set with two binary operations ∗ and ◦ such that (A, ∗) and (A, ◦)
are semilattices and also

∀ a, b ∈ A, a ∗ (a ◦ b) = a ◦ (a ∗ b) = a.

Then, there is a partial order relation ≤ on A in such a way that (A,≤) is a lattice in which

∀ a, b ∈ A, a ∧ b = a ∗ b and a ∨ b = a ◦ b.

Proof. The idempotency, commutativity and associativity of operations ∧ and ∨ are the im-
mediate consequenses of the definition of a lattice and proposition 33.20.1. Also, according to
proposition 34.20.1, to prove a ∧ (a ∨ b) = a it sufices to show a ≤ a ∨ b which is evident. By
the same way, it is proved that a ∨ (a ∧ b) = a, since a ∧ b ≤ a.

Conversely, if (A, ∗, ◦) satisfies the conditions stated in the theorem, then we define

∀ a, b ∈ A a≤
1
b⇔ a ∗ b = a.

Now, since (A, ∗) is a semilattice, it follows at once from proposition 35.20.1 that (A,≤
1
) is a

meet semilattice and a ∧ b = a ∗ b. Similarly, because (A, ◦) is also a semilattice, by the same
proposition, we conclude that if we define

∀ a, b ∈ A a≤
2
b⇔ a ◦ b = b,

then (A,≤
2
) is a join semilattice and a ∨ b = a ◦ b.

To complete the proof, it is sufficient to prove that the relations ≤
1

and ≤
2

are in fact equal;
i.e.

∀ a, b ∈ A a≤
1
b⇔ a≤

2
b.

In other words, we must show that a ∗ b = a⇔ a ◦ b = b.
Let a ∗ b = a. Then,
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a ◦ b = (a ∗ b) ◦ b
= b ◦ (a ∗ b) (commutativity of ◦)
= b ◦ (b ∗ a) (commutativity of ∗)
= b (since ∀ x, y ∈ A, x ◦ (x ∗ y) = y).

Conversely, if a ◦ b = b, then by interchanging the rule of ∗ and ◦ in the above steps, it follows
that a ∗ b = a.

Although it is true that a lattice may posses neither greatest nor smallest members; but if
it has the former, it is usually denoted by 1 and if the later, by 0.

Definition 38.20.1 Let (P,≤) be a lattice with the least member 0 and the greatest member
1 and let a be a member of P . An element b ∈ P is called a complement of a in P , if and only
if

a ∧ b = 0 and a ∨ b = 1.

The lattice (P,≤) is called complemented, if every member from it has a complement.  ▶

Proposition 39.20.1 Statements (i) and (ii) in Definition 36.20.1 are equivalent.

Proof. Let i be true and assume that a, b and c are three members of P . Then, replacing a, b
and c in i by a ∨ b, a and c respectively, we have

(a ∨ b) ∧ (a ∨ c) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c) = (a ∧ (a ∨ b)) ∨ (c ∧ (a ∨ b))
= a ∨ (c ∧ (a ∨ b)) = a ∨ ((c ∧ a) ∨ (c ∧ b)) = (a ∨ (c ∧ a)) ∨ (c ∧ b)
= a ∨ (c ∧ b)

Definition 40.20.1 Boolean algebras A lattice (P,≤) is called a Boolean algebra, if it is
complemented and distributive.  ▶

Example 41.20.1 Let A be a nonempty set and E the collection of all equivalence relations
on A. Then E can be given the structure of a poset by the inclusion relation as follows.

∀ R1 , R2 ∈ E , R1 ≤ R2 ⇔ R1 ⊆ R2 .

The pair (E ,⊆) is a complete lattice, since if one assumes that {R
α
}
α∈∆

is a nonempty family
of elements of E , then

i) It is easy to see that
∩
α∈∆

Rα is also an equivalence relation on A and hence is in E .

Certainly ∧
α∈∆

R
α
=

∩
α∈∆

R
α
.

ii) We define a relation R on A such that for every a, b ∈ A, aRb, if and only if there exist
a finite number of elements of {Rα}α∈∆ such as Rα

1
, . . . , Rαn

and elements x0 , . . . , xn in
A such that x0 = a and xn = b and for every 1 ≤ i ≤ n, xi−1Rα

i
xi . It is easy to check

that R is an equivalence relation on A containing all Rα . If S is also another equivalence
relation on A containing all R

α
and if a, b ∈ A, aRb, R

α1
, . . . , R

αn
, x

0
, . . . , x

n
are as

before, then since S contains each R
α
, for every 1 ≤ i ≤ n we have x

i−1
Sx

i
and since S

is transitive
x

0
Sx

1
, x

1
Sx

2
, . . . , x

n−1
Sx

n
⇒ x

0
Sx

n
.

Thus, (a, b) = (x
0
, x

n
) ∈ S i.e. R ⊆ S and then

R =
∨
α∈∆

Rα .
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 ⋄

Definition 42.20.1 Let M
1

and M
2

be two arbitrary collections of subsets of a set A. We
say that M

1
is finer thanM

2
orM

1
is a refinement ofM

2
orM

2
is coarser thanM

1
, if

∀ X ∈M
1
, ∃ Y ∈M

2
, X ⊆ Y ;

i.e. every element ofM1 is contained in a member ofM2 .  ▶

If P is the collection of all partitions of a set A, then P can be given the structure of a poset
by the relation ≤ called the refinement relation as follows.

∀ M
1
,M

2
∈ P, M

1
≤M

2
⇔M

1
is a refinement of M

2
.

Proposition 43.20.1

i) Let A be a nonempty set and (E ,⊆) and (P,≤) be respectively the poset of the family
of all equivalence relations with the inclusion relation and the poset of the family of all
partitions of A with the refinement relation. For each R ∈ E let M

R
∈ P be the partition

corresponding to R according to 4.20.1. Also, for each M ∈ P let RM ∈ E be the
equivalence relation corresponding to M according to 5.20.1. Then the map Φ : E •−→P
which is defined as Φ(R) = M

R
, is a dual isomorphism from E to P. Also, the map

Ψ : P •−→ E defined as Ψ(M) = RM is a dual isomorphism from P to E and Φ and Ψ
are the converse of each other.

ii) (P,≤) is a complete lattice.

20.1.7 Closure operators and Moore families

Definition 44.20.1 Let (P,≤) be a poset.

i) A map f : P •−→ P is said to be a closure operator on P , if

C1) ∀ {a, b} ⊆ P, a ≤ b ⇒ f(a) ≤ f(b) (i.e. f is increasing),
C2) ∀ a ∈ P, a ≤ f(a),
C3) ∀ a ∈ P, f(f(a)) = f(a).

ii) An element a ∈ P is said to be a closed element of f , if f(a) = a.

• A closure operator on the opposite poset (P,≥) is called an interior operator on (P,≤).

 ▶

If f is a closure operator on a poset P and C the collection of the closed elements of P , then C
with the induced partial ordering imposed by P , becomes a poset. If A is a subset of C, then
inf

C
A and sup

C
A subject to existence, can be found from inf

P
A and sup

P
A.

Proposition 45.20.1 Let (P,≤) be a poset, f a closure operator on P , and C the collection
of closed elements of P with and ∅ ̸= A ⊆ C.

i) An element b ∈ P is closed under f , if and only if there is an a ∈ P with f(a) = b; in
other words, C = f(P ).

ii) A necessary and sufficient condition for inf
C
A to exist, is that inf

P
A exists and when

this is the case, we have
inf

P
A = inf

C
A ∈ C.

Thus, the infimum of a collection of closed elements is itself closed.
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iii) If sup
P
A exists, then sup

C
A also exists and then

sup
C
A = f(sup

P
A).

Proof. i) This is clear by definitions.

ii) Let inf
P
A exist and set a = inf

P
A. In order to prove a = inf

C
A it is enough to show

that a ∈ C i.e. f(a) = a. Since a ≤ f(a), we have to prove that f(a) ≤ a and since a is
the infimum of A in P , it suffices to show that f(a) is also a lower bound for A in P . If
b ∈ A, it is clear that b ≥ a and since f is increasing, f(b) ≥ f(a). But, b ∈ C and so
f(b) = b and b ≥ f(a). Therefore, f(a) is a lower bound for A in P and f(a) ≤ a.
Conversely, if a = inf

C
A ∈ C exists, then a is clearly a lower bound for A in P . Now,

assume that m ∈ P and for each n ∈ A, m ≤ n. Then f(m) ≤ f(n). Since n ∈ A ⊆ C,
f(n) = n and thus f(m) ≤ n. By Part (i), f(m) is in C and therefore is a lower bound
for A in C. By definition, f(m) ≤ a = inf

C
A. Hence, m ≤ f(m) ≤ a and m ≤ a, and

consequently, a is in fact the infimum of A in P and a = inf
P
A = inf

C
A.

iii) Assume that sup
P
A exists and a = sup

P
A. For each b ∈ A, we have b ≤ a. Thus,

f(b) ≤ f(a) and since f(b) = b, we have b ≤ f(a). By Part (i), f(a) ∈ C. So, f(a) is an
upper bound for A in C. Now, if m ∈ A and m is an upper bound for A in C, m is also
an upper bound for a in P , and therefore, m ≥ a = sup

P
A. Hence, f(m) ≥ f(a), and

since m ∈ A ⊆ C, m = f(m) ≥ f(a) i.e. f(a) ∈ C is the least upper bound for A in C.
Thus, sup

C
A = f(a) = f(sup

P
A).

Theorem 46.20.1 Let P be a complete lattice, f a closure operator on P and C the family
of closed elements of P . Then C with the induced partial ordering, is also a complete lattice i.e.
the collection of closed elements of a complete lattice under a closure operator forms a complete
lattice.

Definition 47.20.1 Let P be a complete lattice with the greatest element 1 ∈ P . A subset
M of P is said to be a Moore family of elements of P , if M is closed under taking arbitrary
infimums i.e. if {x

i
}

i∈I
is an arbitrary collection of elements of M , then

∧
i∈I

x
i
∈ M (note that

the infimum is taken in P).  ▶
Note that if we choose I to be the empty family, then it follows from the definition of

infimum that
∧
i∈I

x
i
= 1 and thus 1 ∈M i.e. any Moore family of elements of a complete lattice

automatically contains the greatest element of the lattice.

Proposition 48.20.1

i) Let (P,≤) be a poset and C the collection of all closure operators on P . Then C with the
ordering relation ≤

1
defined as follows is a poset.

∀ ϕ, ψ ∈ C, (ϕ ≤
1
ψ ⇔ (∀ a ∈ P, ϕ(a) ≤ ψ(a))).

In fact, if we consider P P with the pointwise ordering or componentwise order relation,
then ≤

1
is the same as the induced partial ordering imposed from P

P on C.

ii) Suppose that P is a complete lattice andM is the family of all Moore families of elements
of P . Then, M with the inclusion relation ⊆ becomes a poset (M,⊆).

Theorem 49.20.1 Let P be a complete lattice and (C,≤
1
) and (M,⊆) be respectively the

collection of all closure operators on P and the family of all Moore families of elements of P
with the partial orderings defined in Proposition 48.20.1.
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i) If ϕ ∈ C and M
ϕ

def
= {a ∈ P : ϕ(a) = a}, then M

ϕ
∈M.

ii) Let M ∈M and define the map ψ
M

: P •−→ P as follows.

∀ a ∈ P, ψ
M
(a)

def
= inf{x ∈M : x ≥ a}.

Then ψ
M
∈ C.

iii) The map Φ : C •−→M defined by the formula Φ(ϕ) =M
ϕ

is a dual isomorphism from C
to M. Also, the map Ψ : M•−→C defined as Ψ(M) = ψ

M
is a dual isomorphism from

M to C and Φ and Ψ are the converse of each other.

Corollary 50.20.1

i) If P is a complete lattice and ϕ a closure operator on P , then the collection of those
elements of P which are closed under ϕ forms a Moore family of elements of P .

ii) If P is a complete lattice and M a Moore family of elements of P , then there is one and
only one closure operator ϕ on P such that M is exactly the collection of closed elements
of P under ϕ.

iii) If P is a complete lattice and M a Moore family of elements of P , then M with the induced
partial ordering from P is a complete lattice such that if A is a subset of M , then

inf
M
A = inf

P
A,

sup
M
A = inf

P
{x ∈M : x ≥ sup

P
A}.

In particular, if f is a closure operator on the complete lattice P and C is the collection
of closed members of P under f , then

∀ a ∈ P, f(a) = inf
P
{x ∈ C : x ≥ a}.

If P is a complete lattice and ϕ a closure operator on P , then the collection of those elements
of P which are closed under ϕ forms a Moore family of elements of P .

Example 51.20.1 Let X be a nonempty set, (P(X),≤) the power set of X with the inclusion
relation and M

0
a Moore family of elements of X (in this case, we say that M

0
is a Moore

family of subsets of X). Then (M0 ,⊆) is a complete lattice, such that for every nonempty
subset A ofM0 we have

infM0
A =

∩
a∈A

A;

sup
M

0
A =

∩
B∈P(X)

{B ∈M
0

: B ⊇
∪
A∈A

A}.

 ⋄
To see that how the machinery of closure operators and Moore families may prove to be

useful, assume that you are interested in some specific subsets of a universal set U that satisfy
some property P . In that case, if the collection of subsets having property P is a Moore family
then you may be sure that property P is essentially a “closeness” property and you are able to
talk about the closure of a subset A ⊆ U with respect to property P which can be described
as the smallest subset having property P and containing A. Note that this closure of A is
guaranteed to exist by the Moore family property and can be expressed as the intersection of
all subsets of U that contain A and satisfy P at the same time.

20.1.8 Graphs
Throughout this section we recall some basic definitions and concepts from graph theory. For
more details and deeper facts the interested reader may consult the existing literature (e.g.
see []).
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Figure 20.5 – A labeled multigraph G(V,E,+,−,R) (see Example 53.20.1).

Definition 52.20.1 Variants of graphs
A labeled multigraph G = (V,E,+,−, ℓ) with labels from the set L, consists of a nonempty

set of vertices, a set of edges, a function + : E •−→ V that maps an edge e ∈ E to its
terminal vertex e+, and similarly a function − : E •−→ V that maps an edge e ∈ E to its
initial vertex e−, along with a labeling map ℓ : E •−→ L. Given a labeled multigraph G =
(V,E,+,−, ℓ), the corresponding base multigraph, G = (V,E,+,−), is a multigraph structure
where we forget about the labels. This unlabeled structure is sometimes referred to as an
unweighted multigraphs.

Since the maps (−) and (+) induce a direction on each edge, in general, a multigraph is
a directed graph , meaning that the graph structure constitutes of directed edges. If a labeled
multigraph G = (V,E,+,−, ℓ) satisfies the following conditions then G is said to be a simple
labeled graph ,

SG1) ∀ {u, v} ⊆ V,
(
[∃! e

1
, e−

1
= u and e+

1
= v] and [∃! e

2
, e−

2
= v and e+

2
= u]

)
,

with ℓ(e
1
) = ℓ(e

2
),

SG2) For any edge e ∈ E we have e+ ̸= e−.

Clearly, for simple graphs, for any pair of vertices {u, v} ⊆ V , there exists a unique pair of
edges with opposite directions between u and v with the same label. Hence, since there are no
loops (i.e. an edge e with e+ = e−), one may identify these pair of edges with an undirected
edge e def

= {u, v}, sometimes written as uv for simplicity, with the same labeling. We may just
talk about a graph G when the rest of the structure is clear from the context.

For any vertex v ∈ V (G), the out-neighborhood of v is defined as

N+
G
(v)

def
= {u ∈ V : ∃ e ∈ E(G) e− = v, e+ = u}.

Similarly, the in-neighborhood of v is defined as

N−
G
(v)

def
= {u ∈ V : ∃ e ∈ E(G) e+ = v, e− = u},

and the neighborhood of v in G, N
G
(v), is defined as the union N−

G
(v) ∪N+

G
(v). The concepts

in-degree, d−
G
(v), and out-degree, d+

G
(v), of a vertex v are defined as |N−

G
(v)| and |N+

G
(v)|,

respectively.
The concepts of the neighborhood, and the degree of a vertex v, for a simple graph G, are

defined mutatis mutandis. Also, we may exclude the subscript when the graph is clear from the
context,  ▶

Example 53.20.1
The graph depicted in Figure 20.5 shows a multigraph on 4 vertices in V def

= {v
1
, v

2
, v

3
, v

4
}

and 8 edges in E def
= {e1 , e2 , e3 , e4 , e5 , e6 , e7 , e8}, and the labeling map ℓ : E •−→R whose values

appear in parentheses next to the edge name. For instance, in this setting, we have

e−
8
= e+

8
= v4 , e−

1
= e+

2
= e+

3
= v1 , and ℓ(e7) =

√
5.

Also, Figure 20.6 shows a simple graph and it corresponding symmetric multigraph. Note that,
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Figure 20.6 – A simple graph and its corresponding multigraph (see Example 53.20.1).
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Figure 20.7 – Some examples of paths (see Example 55.20.1).

for this graph, one may refer to the simple edge v
1
v
3

which is essentially the same as v
3
v
1

since
both refer to the set {v1 , v3} which is corresponding to the pair of edges {e3 , e−1

3
}.  ⋄

Definition 54.20.1 Walks, paths and cycles
A string in (V ∪ E)∗ of the form v1e2v3e4 . . . e2nv2n+1 where odd symbols are vertices and

even symbols are edges is called a walk of length n with the starting vertex v
1

and the ending
vertex v

2n+1
, if

∀ 1 ≤ i ≤ n, e−
2i
= v

2i−1
and e+

2i
= v

2i+1
.

A path is a walk in which all vertices are distinct. A cycle is a walk in which all vertices are
distinct except v

1
= v

2n+1
.  ▶

Example 55.20.1
Figure 20.7(a) shows a simple path of length 3, while one may also consider this path as

a path which is a subgraph of the graph depicted in Figure 20.6(b). Similarly, Figure 20.7(b)
shows a directed path of length 3, while one may also consider this path as a path which is a
subgraph of the multigraph depicted in Figure 20.6(a).

Figure 20.7(c) shows an infinite directed walk on the two edges e
1

and e−1
1

, between vertices
v1 and v2 .  ⋄

Definition 56.20.1 Connected graphs and trees
Given a graph G, one may define the relation ∼ on the set of vertices as follows,

u ∼ v ⇔ (there exists a walk starting at u and ending at v).

It is easy to verify that ∼ is an equivalence relation, and one may talk about the equivalence
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classes which are called connected components. A graph is said to be a connected graph if the
relation ∼ induces only one equivalence class on the set of vertices. A graph that do not contain
any cycle is called a forest. A connected forest is called a tree.

A rooted tree (T, r) is a tree T , along with a distinguished vertex r of it, called the root
(see Figure 20.8). If (T, r) is either a simple rooted tree or a directed rooted tree in which the
direction of edges are always away from the root, then one may talk about the distance of a
vertex from the root. In this way, one may draw the root at, say, level zero, and each other
vertex at the level corresponding to its distance from the root. In this way, vertices at the same → Exr. 20.3.16
level are not connected to each other and edges are always drawn between two consecutive level
(say from the upper level to the lower level).  ▶

Example 57.20.1
Figure 20.8 shows a couple of directed trees. Note that, Figure 20.8(a) can be regarded as

a finite rooted tree with the root v
1
, where other vertices appear at the first and the second

level. Also, Figure 20.8(b) shows an infinite rooted tree with the root u
1
, in which there exists

an infinite path u
1
u

6
u

7
u

8
· · · .

 ⋄
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Figure 20.8 – A couple of trees (see Example 57.20.1).
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