20.3 Exercises

- 20.3.1. If *R* and *S* are two relations show that $dom(R^{-1}) = ran(R)$ and $ran(R^{-1}) = dom(R)$. Also, show that if $R \subseteq S$ then $S^{-1} \subseteq R^{-1}$.
- 20.3.2. Define "one to one", "onto" relations.
- 20.3.3. Let *R* be an equivalence relation and define *|R|* to be the number of equivalence classes of *R*. Then show that if for two equivalence relations *R* and *S* we have $R \subseteq S$, then *|S| ⊆ |R|*
- 3.4. Let R be an equivalence relation on a set A . Then a subset $B \subseteq A$ is said to be R -
saturated if or all a and b in A , the statements $a \in B$ and $(a, b) \in \overline{R}$ imply $b \in B$. Show
the correctness of the follow 20.3.4. Let *R* be an equivalence relation on a set *A*. Then a subset $B \subseteq A$ is said to be *Rsaturated* if for all *a* and *b* in *A*, the statements $a \in B$ and $(a, b) \in R$ imply $b \in B$. Show the correctness of the following statements.
	- A subset *B* is *R*-saturated if and only if it is a union of a collection of blocks of the quotient set *A/R*.
	- If *R* and *S* are equivalence relations on *A* then the following statements are equivalent.
		- $− R ⊆ S$.
		- **–** Every *S*-saturated set is *R*-saturated.
		- **–** Every block of the quotient set *A/S* is *R*-saturated.
- 20.3.5. Show that if *A* and *B* are finite sets, then $|B^A| = |B|^{|A|}$, justifying the notation.
- 20.3.6. Show that for any function *f* and any set *A* we have $f|_A = f \cap (A \times ran(f))$.
- 20.3.7. Show that an operation may have at most one (two-sided) identity element.
- 20.3.8. Let (*S, .*) be a semigroup and for any two subsets of *S* as *X* and *Y* define

 $XY \stackrel{\text{def}}{=} \{x.y : x \in X \text{ and } y \in Y\}.$

Now, for any three subsets *X*, *Y* and *Z* of *S* prove,

- $X(Y \cup Z) = XY \cup XZ$ and $(Y \cup Z)X = YX \cup ZX$.
- If *X ⊆ Y* then *XZ ⊆ Y Z* and *ZX ⊆ ZY* .
- 20.3.9. Given finite sets Σ, explicitly introduce a one to one and onto map Σ *[∗]* ¹*−*¹ *−→* N showing that Σ^* is a countable set.
- 20.3.10. Show that for any two languages *K* and *L* we have $K \backslash L = (L^R / K^R)^R$.
- 20.3.11. Study and analyze the properties of the quotient of languages with respect to union, intersection and concatenation of languages.
- 20.3.12. Given finite sets Σ and Γ , show that for any homomorphism $\sigma : \Sigma^* \longrightarrow \Gamma^*$ we have $\sigma(\epsilon) = \epsilon$.
- 20.3.13. Given finite sets Σ and Γ , show that any map $f : \Sigma \rightarrow \Gamma$ may be extended to a homomorphism $\sigma_f : \Sigma^* \longrightarrow \Gamma^*$ in a unique way.
- 20.3.14. Show that a lattice can be defined as an algebraic structure with two binary operation.
- 20.3.15. Let *R* be a relation on *X*. Use what you learned in Section 20.1.7 to show that one may talk about the smallest equivalence relation \overline{R} containing R , and the map (*−*) is actually a closure operator.
- 20.3.16. A simple graph *G*(*V, E*) is said to be a *bipartite graph* if there is a partition of the vertex set as $V = A \cup B$ such that all edges appear between the parts A and B. Show that a simple graph is bipartite if it does not contain any odd cycle. Deduce that any simple tree is a bipartite graph.