
DRAFT
Chapter 7

Regular languages

In this chapter we study regular languages, characterized by deterministic finite automata (see
Definitions 3.3.1), as the class of most simple languages in Chomsky’s hierarchy. It turns out
that a regular language is essentially a pack of words whose syntax can be uniformly1 verified
using a constant amount of memory (i.e. space) in real time2.

On the other hand, being too simple implies that the computational model admit an alge-
braic interpretation, in addition to its coalgebraic structure as a dynamical system. Also, this → Sec. 5.4
simplicity of structure gives rise to the fact that all four fundamental classes coincide, making
the subject ideal for a first encounter with a computational model.

7.1 On most simple computers
There may be many different approaches to categorize languages in terms of complexity of their
descriptions3, while one of the most basic approaches is to measure the resources used by the
best verification algorithm for the membership problem4. This approach, although deep as
a theory, is quite simple when one is going to impose strong conditions on the algorithms to
simplify them. Choosing the most natural resources as time and work space (i.e. used memory),
and forcing these to their extremal limits as being real time and using constant memory, raises → Exr. 7.12.1
the following question,

What are the most simple computers/deciders that can operate in real time and using
constant memory (i.e. to process any given input)?

* Will be completed when students hand in Exercise 7.12.1!

7.2 Automata and algebras
Let us start by defining a simple algebraic structure that turn out to be the core structure of → Def. 1.7.5

→ Sec. 5.4one of the simplest computational models called abstract automata.

Definition 1.7.2 Preautomata
A preautomaton A(Q, q0 ∈ Q, {τi : Q •−→ Q}i∈Σ) (or sometimes a Σ-preautomaton to

emphasize the set of input symbols), on the state space Q, and the set of input symbols Σ of → Sec. 20.1.6
size n, is an algebra having a nullary operation q

0
∈ Q and n unary operations τ

i
. Each unary

operation τ
i
is called the transition map of symbol i ∈ Σ, where q

0
is said to be the initial state.

Sometimes, we may refer to such a preautomaton as a Σ-preautomaton if we want to explicitly
refer to the set of input symbols Σ.

1i.e. the verification algorithm does not depend on the word being verified.
2i.e. in time equal to the length of the word.
3This is essentially the main theme of the theory of computational complexity, containing many different

approaches as structural complexity, Kolmogorov complexity, etc.
4Also see abstract Blum-Shub complexity theory (e.g. see []).

34

DRAFT

CHAPTER 7. REGULAR LANGUAGES 35

q
0start

0

1

(a) A

q0 q1

q2

1

0

10

0, 1

start

(b) B

{a} b

{c, d}

1

0

10

0, 1

start

(c) C

Figure 7.1 – See Example 2.7.2.

Throughout this chapter, by an algebra we mean a preautomaton as an algebra of the type
defined above. ▶ → Assumptions

Example 2.7.2 Graphical description of preautomata
The data expressing a preautomaton A(Q, q

0
∈ Q, {τ

i
: Q•−→Q}i∈Σ) may also be presented → Sec. 20.1.8

in an schematic way, as a labeled multigraph A(Q,E ⊆ Q2,+,−, ℓ), such that

[e
def
= (qs , qt) ∈ E, e− = qs , e

+ = qt and ℓ(e) = i] ⇔ (qs , qt) ∈ τi ,

where on the right hand side we are treating τi as a relation. We also, add an arrow pointing → Sec. 20.1.2
to the state q0 , distinguishing this state from the other ones (as an extra structure).

Note that, within this setup, for each state q ∈ Q and i ∈ Σ there is exactly one directed edge
leaving q whose label is i, since τ

i
is a function. This, clearly, implies that any preautomaton → Sec. 3.2

works deterministically, and that the corresponding graph is a directed labeled graph.
Figure 7.1a shows the trivial preautomaton on the one element state space {q

0
}. Also,

the preautomata B(Q, q0 , {τi : Q •−→ Q}i∈Σ) depicted in Figure 7.1b and the preautomata
C(P, {a}, {ηi : P •−→ P}i∈Σ) depicted in Figure 7.1c are essentially the same but they have → Def. 3.7.2

→ Thm. 5.7.3different state spaces with the following transition maps,

τ
i

i = 0 i = 1

q0 q2 q1
q
1

q
1

q
2

q
2

q
2

q
2

η
i

i = 0 i = 1

{a} {c, d} b
b b {c, d}
{c, d} {c, d} {c, d}

We will formalize this equality concept in what follows. ⋄

The concepts of a homomorphism and an isomorphism are defined to make it possible to com- → Sec. 20.2
pare algebraic structures regardless of the nature of their objects. For the case of preautomata
we have the following definition.

Definition 3.7.2 Homomorphisms and isomorphisms
Let A(Q, q0 ∈ Q, {τi : Q •−→ Q}i∈Σ) and B(P, p0 ∈ P, {ηi : P •−→ P}i∈Σ) be two preau-

tomata with the same set of input symbols Σ. A homomorphism from A to B is a mapping
σ : Q −→ P that preserves the algebraic structures (see Figure 7.2), i.e.

∀i η
i
◦ σ = σ ◦ τ

i
,

σ(q
0
) = p

0
.

Also, A and B are said to be isomorphic , denoted by A ∼= B, if there exists a bijective → Exr. 7.12.2
homomorphism σ : A•−→B such that the inverse, σ−1 : B •−→A, is also a homomorphism. ▶

Definition 4.7.2 Closed subsets and reduced preautomata
Let A = (A,O) be an algebra and let τ ∈ O be an n-ary operation of A. A subset B of A

is τ -closed if for every choice of n elements a1 , . . . , an in B we have τ(a1 , . . . , an) ∈ B. Also, a

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 36

subset B ⊆ A is said to be a closed subset of A if B is τ -closed for each operation τ of A. A → Sec. 20.2
subalgebra of A is any algebra B = (B,N) which is isomorphic to a closed subset C of A along
with the restrictions of all operations in O to C. Hence, note that, the concept of a subalgebra
is just defined up to isomorphisms of algebras of the same type.

Within this context, in a preautomaton A(Q, q0 ∈ Q, {τi : Q •−→Q}i∈Σ), a state qt is said
to be accessible (or reachable) from qs if there exists i1 , i2 , . . . , im such that

qt = τim ◦ · · · ◦ τi2 ◦ τi1 (qs).

A reduced preautomaton A(Q, q0 ∈ Q, {τi : Q •−→ Q}i∈Σ) is a preautomaton whose only → Exr. 7.12.3
subalgebra is A itself. Note that, equivalently, A is reduced if each state q ∈ Q is accessible
from q

0
.

 ▶

7.3 Automata and congruence relations
Recall that an equivalence relation on a set A is a binary relation ∼ on A that is reflexive, → Sec. 20.1.2
symmetric and transitive. Also, the equivalence class of an element a in A with respect to the
equivalence relation ∼, denoted by [a]∼, is the set of all elements of A which are equivalent to
x, i.e. [a]∼ = {b ∈ A : a ∼ b}. The set of all equivalence classes of A with respect to ∼,
denoted by A/∼ ∈ Π(A), is called the quotient set of A by ∼ and is a partition of A. On the
other hand, recall that for any partition ζ of a set A, one may define an equivalence relation ∼
on A where a ∼ b if and only if a and b belong to the same element of ζ. Hence, talking about
equivalence relations on a set is essentially the same as talking about partitions of the set itself.

Recall that, given any onto map σ : A−→•B gives rise to an equivalence relation ∼σ on A → Not. ∼σ

according to which
a1 ∼σ a2 ⇔ σ(a1) = σ(a2).

Hence, the collection of all σ−inverse images of the elements of B forms a partition of A.

Definition 1.7.3 Congruence relations
Let A = (A,O) be an algebra. A congruence relation is an equivalence relation ∼ on A

which is compatible with the algebra operations. In the case of a preautomaton, where each
operation is either nullary or unary, this means that for every a and b in A and each unary
operation τ

i
the following equality hold regardless of choosing the representatives a and b,

[a]∼ = [b]∼ ⇔ [τ
i
(a)]∼ = [τ

i
(b)]∼ . (7.1)

 ▶
Equation 7.1 as the main property of a congruence relation guarantees that one may define

a well-defined quotient algebra as follows.

Definition 2.7.3 The quotient preautomaton
Let A(Q, q0 ∈ Q, {τi : Q •−→Q}i∈Σ) be a preautomaton and ∼ be a congruence relation on

x

y

τ
i

a

b

η
i

σ : Q → P

A B

Figure 7.2 – A homomorphism from A to B.

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 37

x

τ
i

σ(x) = [x]∼

[τ
i
(x)]∼ = τ̃

i
([x]∼)

σ

σ

τ
i τ̃

i

Figure 7.3 – The canonical map commutative diagram (see Definition 4.7.3).

A. The quotient preautomaton of A by ∼ is defined as

A/∼
def
= (Q/∼, [q0]∼ , {τ̃i : Q/∼ •−→ Q/∼}i∈Σ)

where τ̃i([a]∼)
def
= [τi(a)]∼ . Note that by Equation 7.1 each τ̃i([a]∼) is well-defined as above

where (a) can be any one of the representatives of the equivalence class [a]∼ . ▶

Example 3.7.3 Trivial congruence relations
Given a preautomaton A(Q, q

0
∈ Q, {τ

i
: Q •−→Q}i∈Σ), considering Id

Q
as a relation, one

may verify that Id
Q

is a congruence relation for which [q]
Id

Q
= {q} for any q ∈ Q. Clearly, in

this setting, A/Id
Q

is isomorphic to A itself.
On the other hand, consider 1

Q

def
= Q2 as a relation and note that it has only one equivalence → Not. 1A

class which isQ itself. Hence, again, trivially, 1
Q

is a congruence relation and A/1
Q

is isomorphic → Exm. 2.7.2
to the preautomaton of Figure 7.1a with only one state. ⋄

Example 4.7.3 The canonical map
Let A(Q, q0 ∈ Q, {τi : Q •−→Q}i∈Σ) be a preautomaton and ∼ be a congruence relation on

A. The natural map or the canonical map, σ∼ : A−→• A/∼, is defined as σ∼(x)
def
= [x]∼ . Note

that by definition, σ∼ is a homomorphism (see Figure 7.3). In other words,

σ∼(τi(x)) = [τ∼(x)]∼ = τ̃∼(σ∼(x)),

and
σ∼(q0) = [q0]∼ .

 ⋄
Using what we have developed so far, we are ready to prove one of the main isomorphism

theorems that will be our basic tool to classify preautomata in what follows.

Theorem 5.7.3 If σ is a homomorphism from a preautomaton A to a reduced preautomaton
B, then A/∼σ and B are isomorphic.

Proof. Given A(Q, q
0
∈ Q, {τ

i
: Q •−→ Q}i∈Σ) and B(P, p

0
∈ P, {η

i
: P •−→ P}i∈Σ) where B

is reduced, note that, since σ is a homomorphism, for any choice of representatives x and y,
where x ∼ y, we have

[x]∼σ
= [y]∼σ

⇔ σ(x) = σ(y)

⇔ η
i
(σ(x)) = η

i
(σ(y))

⇔ σ(τ
i
(x)) = σ(τ

i
(y))

⇔ [τ
i
(x)]∼σ

= [τ
i
(y)]∼σ

.

Hence, ∼σ is a congruence relation on A and we can construct the quotient preautomaton,

A/∼σ

def
= (Q/∼σ, [q0]∼σ

, {τ̃
i
: Q/∼σ → Q/∼σ}i∈Σ),

where τ̃i([x]∼σ
) = [τi(x)]∼σ

. Consequently, we define the map σ̃ : A/∼σ •−→B as [x]∼σ
7→ σ(x).

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 38

Next, note that, σ̃ is a one to one map, since

[x]∼σ
= [y]∼σ

⇔ σ(x) = σ(y)

⇔ σ̃(x) = σ̃(y).

Also, σ̃ is an onto map since B is reduced and σ is a homomorphism. On the other hand, σ̃ is → Exr. 7.12.4
a homomorphism too, since

σ̃([q
0
]∼σ

) = σ(q
0
) = p

0
,

and for any i ∈ Σ we have,

σ̃(τ̃
i
([x]∼σ

)) = σ̃([τ
i
(x)]∼σ

)

= σ(τ
i
(x))

= η
i
(σ(x))

= η
i
(σ̃([x]∼σ

)).

Hence, σ̃ is an isomorphism, and consequently, A/∼σ
∼= B. → Def. 3.7.2

7.4 Universal preautomata
Intuitively, a universal preautomaton is a preautomaton whose quotients essentially generate
all existing preautomata up to isomorphism. Here comes the technical definition.

Definition 1.7.4 Universal preautomata
The right universal preautomaton, Ur

Σ
, is the infinite preautomaton → Exm. 25.20.1

Ur
Σ
(Σ∗, ϵ ∈ Σ∗, {r

i
: Σ∗ •−→ Σ∗}i∈Σ)

with the infinite state space Σ∗, whose transition maps are right concatenations, i.e.,

∀ i ∈ Σ, ri(w)
def
= wi.

Similarly, the left universal preautomaton, U l
Σ
, is the infinite preautomaton

U l
Σ
(Σ∗, ϵ ∈ Σ∗, {l

i
: Σ∗ •−→ Σ∗}i∈Σ)

with the infinite state space Σ∗, whose transition maps are left concatenations, i.e.,

∀ i ∈ Σ, l
i
(w)

def
= iw.

 ▶
An important property of Ur

Σ
is the fact that for any given Σ-preautomaton

B(P, p0 ∈ P, {ηi : P •−→ P}i∈Σ),

there exists a canonical homomorphism σB : Ur
Σ
•−→ B. This fact, along with the fundamental

isomorphism theorem (i.e. Theorem 5.7.3), enables one to think of any reduced Σ-preautomaton → Sec. 2.1

[x]

[τi(x)]

σ(x)

σ(τi(x)) = τ̃ ′i(σ(x))

σ̃

σ̃

τ̃i τ̃ ′i

Figure 7.4 – A homomorphism from A/∼σ to B.

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 39

as a quotient of Ur
Σ
. This is our second trick to control and confine the space of species we are → Thm. 2.7.4

going to study. To set notation, given w def
= w

1
w

2
. . . w

n
, let us define

B
r
(w)

def
= η

wn
◦ · · · ◦ η

w2
◦ η

w1
(p

0
),

where q
0

and η
i

are nullary and unary operations of B.

Theorem 2.7.4 For any reduced preautomaton B(P, p
0
∈ P, {η

i
: P •−→ P}i∈Σ) there exists

a canonical homomorphism σ
B
: Ur

Σ
−→• B defined as σ

B
(w)

def
= B

r
(w).

Proof. The mapping σ
B

is a homomorphism (see Figure 7.5), since

σ
B
(ϵ) = p

0

and for any i ∈ Σ we have,

σ
B
(ri(w)) = σ

B
(wi)

= ηi ◦ ηwn
◦ · · · ◦ ηw

1
(p0)

= ηi(σB
(w)),

Hence, σ
B

is an onto map since B is reduced. → Exr. 7.12.4

w

wi

B
r
(w)

σ
B
(wi) = τi(Br

(w))

σ
B

σ
B

r
i τ

i

Figure 7.5 – The canonical onto homomorphism σB from Ur
Σ

to B.

Let us explain how Theorem 2.7.4 can be used efficiently to study Σ-preautomata. Think of
strings w in Σ∗ as tiny germs and assume that you have a special type of eyeglasses (designed for
the Σ-preautomaton B) that lower the resolution and wearing them, you can only distinguish
equivalence classes [a]∼ as a collection of germs, where ∼ is the congruence relation induced
by σ

B
. Then Theorem 2.7.4 implies that for any given preautomaton B, there is a pair of

eyeglasses that wearing them you can see B as a preautomaton with states as subsets of Ur
Σ

and transitions as some restrictions of right concatenation. This in a sense is telling that any
preautomaton with any transition map can be redesigned as a quotient of Ur

Σ
for which the

transition maps are coming from right concatenation.

Corollary 3.7.4 Any reduced preautomaton B(P, p0 ∈ P, {ηi : P •−→P}i∈Σ) is isomorphic to → Thm. 5.7.3
Ur

Σ/∼σ
B

where ∼σ
B

is the congruence relation which is induced by the canonical homomorphism
σ

B
: Ur

Σ
−→• B.

It is instructive to add a note on the usage of word “right” used in Definition 1.7.4, emphasizing
that, actually, the word essentially refers to the end of input, in the sense that the transition → Br (w)

map always add the bit to the rightmost end of the input. For this, we may sometimes use the
word right congruence relation for a congruence relation on Ur

Σ
(resp. a left congruence relation

is similarly defined for U l
Σ
). It is also interesting to note that, following this line of thought, → Sec. 7.6

one may prove “left” counterparts of Theorem 2.7.4 and Corollary 3.7.4, mutatis mutandis, as
follows.

Theorem 4.7.4 For any reduced preautomaton B(P, p
0
∈ P, {η

i
: P •−→ P}i∈Σ) there exists

a canonical homomorphism σ
B
: U l

Σ
−→• B defined as σ

B
(w)

def
= B

l
(w).

Corollary 5.7.4 Any reduced preautomaton B(P, p0 ∈ P, {ηi : P •−→P}i∈Σ) is isomorphic to → Thm. 5.7.3

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 40

Ul

Σ
/∼σ

B
where ∼

σ
B

is the congruence relation which is induced by the canonical homomorphism
σ

B
: U l

Σ
−→• B.

We will talk more about this duality in the next forthcoming sections (see Section 7.6).

Example 6.7.4
Consider the {0, 1}-preautomaton B depicted in Figure 7.6a, and note that applying Corol-

lary 3.7.4 we find a (right) congruence relation ∼ with the equivalence classes → Exr. 7.12.5

[ϵ]∼ = {ϵ}, [1]∼ = {10n : n ∈ N}, and [0]∼ = {0, 1}∗ − ([1]∼ ∪ [ϵ]∼).

Hence, we have B ∼= Ur
/∼ while the canonical homomorphism is depicted in Figure 7.6b. ⋄

q0 q1

q2

1

0

10

0, 1

start

(a)

[ϵ]∼

[1]∼

[0]∼

q
0

q
1

q
2

(b)

Figure 7.6 – See Example 6.7.4.

7.5 The minimal automaton
So far we have studied some basic properties of the structure preautomaton as an algebra,
however, this is still far from the structure of a computer. As our first step toward filling this
gap, we should somehow add the concept of an output to the structure that gives rise to the
following definition.

Definition 1.7.5 Abstract automata
An abstract automaton A(Q, q

0
∈ Q, {τ

i
: Q •−→Q}i∈Σ, γA), is a preautomaton

A(Q, q
0
∈ Q, {τ

i
: Q •−→Q}i∈Σ)

along with an output map γA : Q •−→ {0, 1}. Note that the output map naturally induces a
right output profile by

∀ w ∈ Σ∗, χ
L(A)

(w)
def
= γA(Ar

(w)),

which defines the (right) language of A, denoted by L(A), through its characteristic function.
Note that, by default, the language of an abstract automaton is defined to be the language
determined by the right output profile of the abstract automaton, where for the language
determined by the left output profile, we explicitly use the word left. ▶

Hence, we will be facing three fundamental problems as follows,

• As the design problem, given a language L ⊆ Σ∗, when and how can we design an abstract
automaton whose right output profile determines L?

• As an optimization problem, if such an abstract automaton exists, then how can we
characterize and construct the minimal abstract automaton, Mr (L), whose right output
profile determines L and has the minimum number of states?

• Given a language L ⊆ Σ∗, is it true thatM
r
(L) ∼=Ml

(L) or they are different.

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 41

1
Σ∗

Id
Σ∗

∅

≃
L

∼
L

Relations

Equivalence Relations

Congruence Relations

Figure 7.7 – See Theorem 3.7.5.

These are the main questions that we are going to answer hereafter. To begin, note that any
language L ⊆ Σ∗ determines an equivalence relation ∼

L
with two equivalence classes L and Lc.

In other words, for any pair or words x and y in Σ∗,

x ∼
L
y ⇔ [{x, y} ⊆ L or {x, y} ⊆ Lc] .

Also, note that, for any equivalence relation R ⊆ Σ∗ × Σ∗, the inclusion R ⊆ ∼
L

implies that
each equivalence class of ∼

L
is partitioned by some equivalence classes of R, i.e. the partition

consisting of equivalence classes of R is a refinement of the partition {L,Lc} of Σ∗.
On the other hand, since the set of Σ-preautomata is in one to one correspondence with

that of congruence relations on Σ∗, compatibility with the output map essentially means that
we should look for congruence relations R ⊆ ∼

L
and then consider the Σ-preautomaton which

is determined by R. As a trivial observation the inclusion Id
Σ∗ ⊆ ∼L

proves the following.

Proposition 2.7.5 The trivial abstract automata
Any language L ⊆ Σ∗ is the language of the abstract automaton (Ur

Σ
, χ

L
).

Unfortunately, this trivial solution is not interesting at all, at least as far as the theory of
computation is concerned, since the proposed abstract automaton has an infinite number of
states.

Hence, as our next try, one may seek for the largest possible congruence relation R ⊆ ∼
L
.

Note that, this is not a trivial question since the property of compatibility with respect to right
concatenation is not necessarily preserved by the union operation and consequently, union of
two congruence relations may not be a congruence relation (see Figure 7.7). However, one may
try to study the closure properties of compatibility with respect to right concatenation and try → Sec.20.1.7
to characterize the closure of union of all congruence relations smaller than ∼

L
. In what follows

we will show that the following set

Cr
L

def
= {R ⊆ Σ∗ × Σ∗ : R ⊆ ∼

L
and R is a right congruence relation},

has a maximum element, and we will provide a characterization of this maximum element.

Theorem 3.7.5 Minimal abstract automaton (algebraic version)

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 42

Given a language L ⊆ Σ∗ the largest right congruence relation smaller than ∼
L

, which is
denoted by ≃r

L
, exists and is defined as follows,

∀ {x, y} ⊆ Σ∗, x ≃r
L
y ⇔ x\L = y\L.

In other words, x ≃r
L
y if and only if for any u ∈ Σ∗, the words xu and yu are either both in L

or both are not in L.

Proof. It is easy to verify that ≃r
L

is an equivalence relation. First, let us verify that ≃r
L

is
indeed a congruence relation. For any choice of representatives x and y, we have

x ≃r
L
y ⇔ x\L = y\L
⇔ ∀u ∈ Σ∗ ({xu, yu} ⊆ L or {xu, yu} ⊆ L

c

)

⇒ ∀u ∈ Σ∗ ∀i ∈ Σ ({xiu, yiu} ⊆ L or {xiu, yiu} ⊆ L
c

)

⇔ xi\L = yi\L
⇔ xi ≃r

L
yi

⇔ ri(x) ≃r
L
ri(y).

Then, we prove that ≃r
L
⊆ ∼

L
. For this note that,

x ≃r
L
y ⇔ x\L = y\L
⇔ ∀u ∈ Σ∗ ({xu, yu} ⊆ L or {xu, yu} ⊆ L

c

)

⇒ ({xϵ, yϵ} ⊆ L or {xϵ, yϵ} ⊆ L
c

)

⇔ ({x, y} ⊆ L or {x, y} ⊆ L
c

)

⇔ x ∼
L
y.

Finally, let us prove that for any given congruence relation ρ, we have

ρ ⊆ ∼
L
=⇒ ρ ⊆ ≃r

L
,

showing that ≃r
L

is the maximum element of C
L
. To do so, first, by induction on the length of

u we prove
(x, y) ∈ ρ ⇒ ∀u ∈ Σ∗ (xu, yu) ∈ ρ.

Note that the claim is true when u = ϵ. Also, if we know that the claim is true for all u with
|u| ≤ k, then (x, y) ∈ ρ and (xu, yu) ∈ ρ for some |u| ≤ k implies that

∀ i ∈ Σ (ri(xu), ri(yu)) ∈ ρ ⇒ ∀ i ∈ Σ (xui, yui) ∈ ρ.

Consequently, we have,

(x, y) ∈ ρ ⇔ ∀u ∈ Σ∗ (xu, yu) ∈ ρ
⇒ ∀u ∈ Σ∗ xu ∼

L
yu

⇔ ∀u ∈ Σ∗ ({xu, yu} ⊆ L or {xu, yu} ⊆ L
c

)

⇔ x\L = y\L
⇔ x ≃r

L
y.

Theorem 3.7.5 explicitly describes the largest right congruence relation smaller that ∼
L
,

giving rise to the minimal abstract automaton M
r
(L)

def
= Ur

Σ/≃r

L
. In the sequel, we are going

to provide another explicit equivalent description of this abstract automaton as follows.

Definition 4.7.5 The minimal (right) abstract automaton of L ⊆ Σ∗

Given a language L ⊆ Σ∗, we define the abstract automaton Mr (L) as the abstract au-

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 43

[x]≃
L

[xi]≃
L

x\L

xi\L

σ

σ

r̃i τi

Figure 7.8 – See Theorem 5.7.5.

tomaton with the set of states
Qr

M

def
= {x\L : x ∈ Σ∗},

and the starting state (i.e. the nullary operation) x\L = L ∈ Qr
M

. Also, for any i ∈ Σ, the
transition maps τ

i
is defined as left quotient by i, i.e.

τi(x\L)
def
= i\(x\L) = (xi)\L ∈ Qr

M
.

Moreover, the output map γM : Qr
M
•−→ {0, 1} is defined as,

γM(x\L) = 1 ⇔ ϵ ∈ x\L.

 ▶

The following theorem shows that what is defined in Definition 4.7.5 is actually isomorphic to
the right minimal automaton Mr (L)

def
= Ur

Σ/≃r

L
.

Theorem 5.7.5 Minimal (right) abstract automaton (explicit version)
The abstract automaton defined in Definition 4.7.5 is isomorphic to the right abstract au-

tomaton Ur

Σ/≃r

L
describing L, with the minimum number of states, as its right output profile.

Proof. In order to show this isomorphism, consider the map σ : Ur

Σ/≃r

L
•−→Mr (L) defined as

σ([x]≃r
L
)
def
= x\L for any x ∈ Σ∗. For any choice of representatives x and y, where x ≃r

L
y, we

have

[x]≃r
L
= [y]≃r

L
⇔ x ≃r

L
y

⇔ x\L = y\L
⇔ σ([x]≃

L
) = σ([y]≃

L
).

Hence, the map is well-defined and one to one. It is also trivially onto, since for any x\L ∈ QM

there exists [x]≃
L

in the state space of Ur

Σ/≃r

L
such that

σ([x]≃
L
) = x\L.

Finally, let us prove that the map is a homomorphism. For any i ∈ Σ and x ∈ Σ∗, we have

τ
i
(σ([x]≃r

L
)) = τ

i
(x\L)

= (xi)\L
= σ([xi]≃r

L
)

= σ(r̃i([x]≃r
L
)).

As we mentioned earlier, the computational model of an abstract automaton is essentially
trivial without any restrictions on the number of states, since any language can be considered as
the language of a trivial infinite abstract automaton as stated in Proposition 2.7.5. This setup

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 44

is also quite uninteresting since it contradicts the very fundamental and basic assumption of Assumptions

the theory of computation stating that computational models must have finite descriptions.
These facts motivate the following definition.

Definition 6.7.5 Regular languages
A language L ⊆ Σ∗ is said to be a regular language, if the (right) congruence relation ≃r

L

has a finite number of equivalence classes. Note that Theorem 5.7.5 implies that any regular → Sec.7.1
language can be finitely described by a finite abstract automaton, and consequently, admits
finite description by regular computers. ▶

Example 7.7.5
Consider the language L def

= {1 0n : n ∈ N}. Let us verify, using Definition 6.7.5, that L is
a regular language. To do this, we should somehow verify that the number of sets of the form
x\L is finite. Hence, we make a list as follows.

• ϵ\L = L,

• 0\L = ∅,

• 1 0j\L def
= Z ∀ j ∈ N,

• 0u\L = ∅ u ∈ Σ∗,

• 11u\L = ∅ u ∈ Σ∗,

• 101u\L = ∅ u ∈ Σ∗.

Now its easy to verify, using Definition 4.7.5, that the minimal (right) abstract automaton of
L is exactly the preautomaton depicted in Figure 7.6a, with the output map γ that maps q1 to
one and the other states to zero. ⋄

7.6 Left or right?
You are given a set L ∈ Σ∗ and you are supposed to find a finite description for it. Your
strategy is to, somehow, find a pattern in strings that can characterize L in Σ∗. As far as you
are looking for patterns, you may not be necessarily concerned about which side of the string is
its beginning and which side is its end. However, if you decide to find such a characterization → Sec. 1.2
by solving the membership problem-type, using a computer, then you have to decide how you
are supposed to feed each string into the machine.

Assume that you are living on a planet E in which people always feed strings into computers
starting from the leftmost bit of the string, meaning that the rightmost bit is the end of input.
Also, assume that your friend, who is facing the same problem with L, lives on the planet J in
which people feed strings into computers starting from the rightmost bit of the string, where
the leftmost bit is the end of input. Needless to say, as far as the language L is concerned,
you and your friend both are facing the same problem, however, since you have decided to find
descriptions which are based on solving the membership problem-type using computers, it is
possible that you find different answers on E or J .

To see this, consider a simple language as

L
def
= {w1 : w ∈ {0, 1}∗}.

Given a string u ∈ {0, 1}∗, in order to decide whether u is in L or not, one has to verify whether
the rightmost bit of u is equal to 1 or not. However, clearly, there is a simple difference in these
verification procedures if one starts from the left or from the right of the word u, at least in
terms of the time one has to take to reach the rightmost bit.

This simple example shows that solving the membership problem-type from the left or from
the right, using computers, may come to different conclusions. Also, if you are interested in
solving your problem on planet E but using the machinery and facilities of your friend on planet
J , you may send the language LR to your friend on J and ask her to solve the membership

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 45

problem under J ’s standards. Hence, one understands that, to complete the scenario of our
right theory developed so far, one may either use a dual left theory or one may apply the → Exr. 20.3.10
existing right theory to the language LR.

Therefore, one may go through similar steps we took in Sections 7.2, 7.3, 7.4 and 7.5, mutatis
mutandis, defining the minimal left abstract automaton and prove the following counterparts
of our previous facts about right abstract automata.

Definition 1.7.6 The minimal left abstract automaton of L ⊆ Σ∗

Given a language L ⊆ Σ∗, we define the left abstract automaton M
l
(L) as the abstract

automaton with the set of states

Ql
M

def
= {x/L : x ∈ Σ∗},

and the starting state (i.e. the nullary operation) x/L = L ∈ Ql
M

. Also, for any i ∈ Σ, the
transition maps τ

i
is defined as right quotient by i, i.e.

τ
i
(x/L)

def
= i/(x/L) = (xi)/L ∈ Ql

M
.

Moreover, the output map γM : Ql
M
•−→ {0, 1} is defined as,

γM(x/L) = 1 ⇔ ϵ ∈ x/L.

 ▶

Theorem 2.7.6 Minimal left abstract automaton (algebraic left version)
Given a language L ⊆ Σ∗ the largest left congruence relation smaller than ∼

L
, which is

denoted by ≃l
L

, exists and is defined as follows,

∀ {x, y} ⊆ Σ∗, x ≃l
L
y ⇔ x/L = y/L.

In other words, x ≃l
L
y if and only if for any u ∈ Σ∗, the words ux and uy are either both in L

or both are not in L.

Theorem 3.7.6 Minimal left abstract automaton (explicit left version)
The abstract automaton defined in Definition 1.7.6 is isomorphic to the right abstract au-

tomaton Ul

Σ
/≃l

L
describing L, with the minimum number of states, as its left output profile.

Now, a fundamental question that may be raised in relation to Definition 6.7.5 is,

“Does there exists a regular language L whose minimal left abstract automaton has an infinite
number of states?”

Note that, by symmetry of theories, it is straight forward to see that analyzing the above
mentioned question is essentially equivalent to analyzing the dual question concerning left-
regular languages.

We leave it for the reader to answer this question in Exercise 7.12.7, while this will be
discussed in more detail in Section 7.7 from another viewpoint. On the other hand, the following
example shows that there are cases for which we haveM

r
(L) ∼=Ml

(L).

Example 4.7.6
Again consider the language L def

= {1 0n : n ∈ N} of Example 7.7.5 and let us try to find
its minimal left abstract automaton using Definition 1.7.6. Analyzing the right quotients yields
the following list,

• L/ϵ = L/0 = L,

• L/1 = {ϵ},

• L/0j = L ∀ j ∈ N,

• L/1 0j = {ϵ} ∀ j ∈ N,

Amir Daneshgar, April 2020

DRAFT

CHAPTER 7. REGULAR LANGUAGES 46

• L/u = ∅ u ̸= ϵ, u ̸= 0j , u ̸= 10j ∀ j ∈ N,

showing that the minimal left abstract automaton is isomorphic to that of right abstract au-
tomaton (see Figure 7.6a). ⋄

7.7 Reversed automaton and nondeterminism

7.8 Some other descriptions

7.9 The four fundamental classes

7.10 Some extra properties

Amir Daneshgar, April 2020

